Month: October, 2017

Astronomers May Have Found The First Exomoon

When the first exoplanet—or planet orbiting another star—was discovered in 1992, it was a very big deal.

Today, we’ve discovered thousands of exoplanets and it takes a particularly noteworthy one to grab our attention.

We’ve spotted big exoplanets, small exoplanets, and everything in between.

Now scientists are moving on to the next big thing: Exomoons.

Researchers examining old data from the Kepler Space Telescope have spotted what they believe is the first-ever moon beyond our solar system to be found, and they’re planning to use the Hubble Space Telescope to confirm it.

As you might have guessed, the exomoon is an enormous one. The planet in question is Jupiter-sized, and the moon if it indeed exists is around the same size as Neptune.

The Kepler telescope observed the planet and its moon passing in front of their star, which caused the star’s brightness to dip slightly.

This exoplanet-exomoon pair is a strange one, and looks nothing like anything in our own solar system. The researchers believe that the larger, Jupiter-sized planet captured the smaller one and turned it from planet into moon.

Unfortunately, the observations from Kepler aren’t clear enough for the scientists to say definitively that the moon exists. That’s why they need to use Hubble to take a second look.

If Hubble confirms the moon’s existence, it will be the first exomoon ever found. With the many highly sensitive telescopes scheduled to be completed in the next few years, more exomoon discoveries are almost certain.

We’ll probably find a few really big moons over the next few years, and as our telescopes get better we might start finding moons that look like our own.

Pretty soon, exomoons will be old news too, so enjoy this discovery while it’s still fresh.

Please like, share and tweet this article.

Pass it on: New Scientist

The Evolution Of Forests And Trees In Devonian Period

The vascular plant emerged around 400 million years ago and started Earth’s forest-building process during the Silurian geologic period.

Although not yet a “true” tree, this new member of the terrestrial plant kingdom became the perfect evolutionary link (and the largest plant species) with developing tree parts and considered the first proto-tree.

Vascular plants developed the ability to grow large and tall with massive weight needed for the support of a vascular internal plumbing system.

The First Trees

The earth’s first real tree continued to develop during the Devonian period and scientists think that tree was probably the extinct Archaeopteris.

These tree species followed later by other tree types became the definitive species comprising a forest during the late Devonian period.

As mentioned, they were the first plants to overcome the biomechanical problems of supporting additional weight while delivering water and nutrients to fronds (leaves) and roots.

Entering the Carboniferous period around 360 million years ago, trees were prolific and a major part of the plant life community, mostly located in coal-producing swamps.

Trees were developing the parts that we immediately recognize today. Of all the trees that existed during the Devonian and Carboniferous, only the tree fern can still be found, now living in Australasian tropical rainforests.

If you happen to see a fern with a trunk leading to a crown, you have seen a tree fern.

During that same geologic period, now extinct trees including clubmoss and giant horsetail were also growing.

Our Present Evolutionary Forest

Few dinosaurs ever made a meal on hardwood leaves because they were rapidly disappearing before and during the beginning of the new “age of hardwoods” (95 million years ago).

Magnolias, laurels, maples, sycamores and oaks were the first species to proliferate and dominate the world.

Hardwoods became the predominant tree species from mid-latitudes through the tropics while conifers were often isolated to the high-latitudes or the lower latitudes bordering the tropics.

Not a lot of change has happened to trees in terms of their evolutionary record since the palms made their first appearance 70 million years ago.

Fascinating are several tree species that simply defy the extinction process and show no indication that they will change in another dozen million years.

Ginkgo was mentioned earlier but there are others: dawn redwood, Wollemi pine, and monkey puzzle tree.

Please like, share and tweet this article.

Pass it on: Popular Science

Each Time You Recall An Event, Your Brain Distorts It

Remember the telephone game where people take turns whispering a message into the ear of the next person in line?

By the time the last person speaks it out loud, the message has radically changed. It’s been altered with each retelling.

Turns out your memory is a lot like the telephone game, according to a new Northwestern Medicine study.

Every time you remember an event from the past, your brain networks change in ways that can alter the later recall of the event.

Thus, the next time you remember it, you might recall not the original event but what you remembered the previous time. The Northwestern study is the first to show this.

A memory is not simply an image produced by time traveling back to the original event it can be an image that is somewhat distorted because of the prior times you remembered it,” said Donna Bridge, a postdoctoral fellow at Northwestern University Feinberg School of Medicine and lead author of the paper on the study recently published in the Journal of Neuroscience.

Your memory of an event can grow less precise even to the point of being totally false with each retrieval.”

Maybe a witness remembers something fairly accurately the first time because his memories aren’t that distorted,” she said. “After that it keeps going downhill.”

The published study reports on Bridge’s work with 12 participants, but she has run several variations of the study with a total of 70 people.

Every single person has shown this effect,” she said. “It’s really huge.

The reason for the distortion, Bridge said, is the fact that human memories are always adapting.

Memories aren’t static,” she noted.

If you remember something in the context of a new environment and time, or if you are even in a different mood, your memories might integrate the new information.

For the study, people were asked to recall the location of objects on a grid in three sessions over three consecutive days.

On the first day during a two-hour session, participants learned a series of 180 unique object-location associations on a computer screen.

The next day in session two, participants were given a recall test in which they viewed a subset of those objects individually in a central location on the grid and were asked to move them to their original location.

Then the following day in session three, participants returned for a final recall test.

The results showed improved recall accuracy on the final test for objects that were tested on day two compared to those not tested on day two.

However, people never recalled exactly the right location.

Most importantly, in session three they tended to place the object closer to the incorrect location they recalled during day two rather than the correct location from day one.

Our findings show that incorrect recollection of the object’s location on day two influenced how people remembered the object’s location on day three,” Bridge explained.

Retrieving the memory didn’t simply reinforce the original association. Rather, it altered memory storage to reinforce the location that was recalled at session two.

The results revealed a particular electrical signal when people were recalling an object location during session two.

This signal was greater when the next day the object was placed close to that location recalled during session two.

When the electrical signal was weaker, recall of the object location was likely to be less distorted.

The research was supported by National Science Foundation grant BCS1025697 and National Institute of Neurological Disorders and Stroke of the National Institutes of Health grant T32 NS047987.

Please like, share and tweet this articles.

Pass it on: Popular Science

Adobe And Stanford Just Taught AI To Edit Better Videos Than You

Just one minute of video typically takes several hours of editing — but Stanford and Adobe researchers have developed an artificial intelligence (AI) program that partially automates the editing process, while still giving the user creative control over the final result.

The program starts by organizing all of the footage, which is often from multiple takes and camera angles. Those clips are matched to the script, so it’s easy to find several video options for each line of dialogue.

The program then works to recognize exactly what is inside those clips. Using facial recognition alongside emotion recognition and other computational imaging effects, the program determines what is in each frame.

For example, the program flags whether the shot is a wide-angle or a close-up and which characters the shot includes.

With everything organized, the video editor then instructs the program in just how the videos should be edited using different styles and techniques the researchers call idioms.

For example, a common style is to show the face of the character during their lines. If the editor wants that to happen, he or she just drags that idiom over.

The idioms can also be negative. For example, the idiom “avoid jump cuts,” can be added to actually avoid them, or negatively to intentionally add jump cuts whenever possible.

The editor can drag over multiple idioms to instruct the program on an editing style.

In a video demonstrating the technology, the researchers created a cinematic edit by using idioms that tell the software to keep the speaker visible while talking, to start with a wide-angle shot, to mix with close-ups and to avoid jump cuts.

To edit the video in a completely different, fast-paced style, the researchers instead dragged over idioms for including jump cuts, using fast performance, and keeping the zoom consistent.

Editing styles can be saved to recall later, and with the idioms in place, a stylized video edit is generated with a click. Alternative clips are arranged next to the computer’s edit so editors can quickly adjust if something’s not quite right.

The program speeds up video editing using artificial intelligence, but also allows actual humans to set the creative parameters in order to achieve a certain style.

The researchers did acknowledge a few shortcomings of the program. The system is designed for dialogue-based videos, and further work would need to be done for the program to work with other types of shots, such as action shots.

The program also couldn’t prevent continuity errors, where the actor’s hands or a prop is in a different location in the next clip.

The study, conducted by Stanford University and Adobe Research, is included in the July issue of the ACM Transactions on Graphics Journal.

Please like, share and tweet this article.

Pass it on: Popular Science

Take A Look At Our Cosmic Neighborhood

Due to the protective shielding of dangerous Galactic Cosmic Rays provided by a heliosphere or astrosphere, these structures are important for the planets that orbit the respective stars.

Only over the last 15 years, we have been able to detect the first astrospheres and planets around other stars (exoplanets). Graphic of the most immediate environment around the Sun, our cosmic neighborhood.

The locations of known astrospheres and exoplanets are indicated, while we anticipate that many more are present and just awaiting discovery.

The nearest star, alpha Centauri has an astrosphere, and we know of at least two cases where we have detected both an astrosphere and exoplanets.

These systems are truly analogous to our system in which the heliosphere shields a diverse planetary system.

Please like, share and tweet this article.

Pass it on: Popular Science

How Do Dogs Smell Fear?

The portion of the canine’s brain that is used for sorting out smells is up to 40 times the size of that same part of the human brain.

As for fear, being frightened can make humans sweat, an odor that a dog can easily identify.

Then there is adrenaline and associated hormones, which will pump through our bodies when we are are even a little nervous.

Just because we don’t know the “adrenaline scent” ourselves doesn’t mean that a dog won’t recognize it.

However, let me nitpick and say that being able to smell our sweat glands doesn’t mean a dog can literally smell the emotion of fear itself.

Most likely, playing a far bigger role in determining our level of fear is the canine’s outstanding ability to read our body language.

The dog feels our fear and senses we are scared just by watching us.

Dogs are very smart at figuring out our emotions. Anger, feeling threatened or being nervous cannot be hidden from a dog.

In fact, he may pinpoint your fears before you even realize them. People who are afraid of a dog often stare directly at it, probably in hopes of watching his every move.

But the dog may take the stare as a warning that he is going to be confronted, therefore becoming aggressive.

How do dogs smell fear? And can dogs even smell fear at all, in the strictest sense of the phrase?

The answer to these questions may never be known with certainty. But even though you’re an adult now, still choose to follow your parents’ teachings and not show your anxiety when approaching an unknown dog.

Whether your uneasiness can be smelled or sensed, always try to keep my cool.

Please like, share and tweet this article.

Pass it on: New Scientist

Here’s What Happens Inside You When A Mosquito Bites


The video above shows a brown needle that looks like it’s trying to bury itself among some ice-cubes. It is, in fact, the snout of a mosquito, searching for blood vessels in the flesh of a mouse.

This footage was captured by Valerie Choumet and colleagues from the Pasteur Institute in Paris, who watched through a microscope as malarial mosquitoes bit a flap of skin on an anaesthetised mouse.

The resulting videos provide an unprecedented look at exactly what happens when a mosquito bites a host and drinks its blood.

For a start, look how flexible the mouthparts are! The tip can almost bend at right angles, and probes between the mouse’s cells in a truly sinister way.

This allows the mosquito to search a large area without having to withdraw its mouthparts and start over.

From afar, a mosquito’s snout might look like a single tube, but it’s actually a complicated set of tools, encased in a sheath called the labium.

You can’t see the labrum at all in the videos; it buckles when the insect bites, allowing the six mouthparts within to slide into the mouse’s skin.

Four of these—a pair of mandibles and a pair of maxillae—are thin filaments that help to pierce the skin. You can see them flaring out to the side in the video.

The maxillae end in toothed blades, which grip flesh as they plunge into the host. The mosquito can then push against these to drive the other mouthparts deeper.

The large central needle in the video is actually two parallel tubes—the hypopharynx, which sends saliva down, and the labrum, which pumps blood back up.

When a mosquito finds a host, these mouthparts probe around for a blood vessel. They often take several attempts, and a couple of minutes, to find one.

And unexpectedly, around half of the ones that Choumet tested failed to do so. While they could all bite, it seemed that many suck at sucking.

The video below shows what happens when a mosquito finally finds and pierces a blood vessel.

On average, they drink for around 4 minutes and at higher magnifications, Choumet could actually see red blood cells rushing up their mouthparts.

They suck so hard that the blood vessels start to collapse. Some of them rupture, spilling blood into the surrounding spaces.

When that happens, the mosquito sometimes goes in for seconds, drinking directly from the blood pool that it had created.

When the mosquitoes were infected with the Plasmodium parasites that cause malaria, they spent more time probing around for blood vessels.

It’s not clear why—the parasites could be controlling the insect’s nervous system or changing the activity of genes in its mouthparts.

Either way, the infected mosquitoes give up much less readily in their search for blood, which presumably increases the odds that the parasites will enter a new host.

Many hours after a bite, Choumet’s team found Plasmodium in the rodents’ skin, huddled in areas that were also rife with the mosquito’s saliva.

The team also tested “immunised” mice, which were loaded with antibodies that recognise a mosquito’s saliva.

Some people, especially in Africa and Asia, are bitten several times every day, so we wanted to know if mosquitoes behaved differently when they bit animals that were immunised against their saliva,” says Choumet.

Beyond the stunning videos, these discoveries are unlikely to lead to new ways of preventing or treating malaria by themselves.

However, they do tell us a lot more about the event that kicks off every single malaria case—a mosquito bite. It’s a resource that other researchers will undoubtedly use.

I have submitted a grant application to investigate aspects of the interactions between mosquitoes, hosts and parasites,” says Logan.

The techniques and discoveries from this paper are very exciting to me, and will be of value to future activities of my own research group.

Please like, share and tweet this article.

Pass it on: Popular Science

GPUs: The Unsung Heroes That Are Accelerating The Development Of AI

Today, a self-driving car powered by AI can meander through a country road at night and find its way to its destination. An AI-powered robot can learn motor skills through trial and error.

And artificial neural networks can analyse images to identify the early signs of disease more accurately than any human. Truly, we are living in an extraordinary time.

Back in 1995, the convergence of low-cost microprocessors (CPUs), a standard operating system (Windows 95), and a new portal to a world of information (Yahoo!) sparked the PC-Internet era.

It brought the power of computing to about a billion people and realized Microsoft’s vision to put ‘a computer on every desk and in every home.’

A decade later, the iPhone put an ‘Internet communications’ device in our pockets. Coupled with the launch of Amazon’s AWS, the Mobile-Cloud era was born.

A world of apps entered our daily lives and some 3 billion people now enjoy the freedom that mobile computing can afford.

The AI computing era that we are living in today is driven by a new computing model, GPU-accelerated deep learning.

The graphics processing unit or GPU was originally invented to drive 3D graphics in video games.

But, because of its ability to handle large amounts of data at the same time, known as parallel processing, this tiny piece of silicon punches well above its weight.

Several years ago, researchers discovered that the GPU’s parallel processing power makes it perfectly suited to crunching the huge amounts of data required to train the artificial neural networks on which deep learning is based.

The ‘big bang’ of AI was ignited and GPU-accelerated deep learning was born.

Since then, the world has woken up to the power of GPU-accelerated deep learning. Baidu, Google, Facebook and Microsoft were the first companies to adopt it for pattern recognition.

Now, AI researchers everywhere across a wide variety of fields have turned to GPU-accelerated deep learning to advance their work.

GPU-accelerated deep learning is being applied to solve challenges in every industry around the world. Self-driving cars will transform the $10 trillion transportation industry.

In healthcare, doctors will use AI to detect disease at the earliest possible moment, to understand the human genome and tackle cancer, or to learn from the massive volume of medical data to recommend the best treatments.

And AI will usher in the 4th industrial revolution — intelligent robotics will drive a new wave of productivity improvements and enable mass consumer customization.AI will touch everyone.

AI will touch everyone.

Please like, share and tweet this article.

Pass it on: Popular Science

7 Life Extension Technologies That Could Help You Live To 150

Billions of dollars are going into age research, and many experts believe that we’re on the cusp of beating aging. Here are 7 technologies and strategies to look out for.


Caloric restriction or dietary restriction is a diet that decreases your calorie consumption by at least 30%. People on caloric restriction eat very little food along with a regimen of vitamins to make sure they get all the nutrients they need. They say it lowers your body’s metabolism by putting your body into a fasting state.

The theory is that when your body is in a fasting state, it focuses its energy on tissue repair, which means less tissue damage and a longer lifespan.

Experiments with caloric restriction in mice showed up to a 45% increase in lifespan, and similar results were found in experiments with rhesus monkeys.

But studies have started showing similar results from intermittent fasting.

There are different types of intermittent fasting, one involves fasting every day, basically not eating until late in the afternoon. This is actually advocated by the actor Terry Crewes.

This has some noted benefits but the type of fasting that’s of interest to age research involves going for 5 days a month without eating.

Studies tend to show that this puts your body into extreme tissue repair and is even helps prevent cancer.

One of the things that causes the most metabolic wear and tear on your cells is oxidative stress.

Luckily there are antioxidants that bind to the free radicals and prevents them from damaging the cells. Just in case you ever wondered what the whole antioxidant thing was all about.

Now antioxidant supplementation has shown a lot of promise in preventing different types of cancers, but it hasn’t shown to really affect the aging process.

A lot of research in the last couple decades has focused on telomeres.

Well, scientists discovered that these telomeres get shorter every time your cell and chromosomes divide and the theory is that over time throughout your life, this leads to the chromosomes and the DNA becoming frayed, which leads to cells becoming damaged and thus, stop reproducing.

This is a point known as the Hayflick limit.

But, they discovered an enzyme that’s created in cells that reproduce often like skin cells and more so in stem cells called telomerase that actually lengthens and prevents the shortening of telomeres, meaning the cells and tissues survive much longer before hitting the Hayflick limit.

This was a big deal, and won the Nobel Prize for Physiology and Medicine in 2009.

But the drug that’s really got everyone talking these days is metformin.

Metformin is a drug that’s been used since the 1950s to treat diabetes, so it’s nothing new. But researchers started noticing something over the decades.

Patients who took metformin tended to live longer and suffer from fewer age-related illnesses. One study found that diabetics on metformin not only lived longer than diabetics who aren’t on metformin, they lived longer than non-diabetic people as well.

You really can’t talk about aging research without talking about Aubrey De Grey. He’s the founder and head scientist at the SENS Research Foundation and the SENS foundation has pinpointed 7 different categories of cellular damage that leads to aging and has set about fixing them one by one.

But of course, the ultimate option is nanobots.

Swarms of blood-cell size robots that can be programmed to repair tissues, destroy tumors, clean blockages in our arteries and physically connect neurons are the ultimate life expander.

A Group Of 7 Moons Keep Saturn’s Rings From Breaking Apart

While the Cassini spacecraft is dead – engineers deliberately plunged it into Saturn’s atmosphere on September 15, ending its 13-year mission around the planet – analyzing the reams of data from the mission will take decades, NASA said in a statement, as new insights were released this week from the spacecraft’s final days.

The orbital resonances of nearby moon’s create the vinyl record-like grooves in Saturn’s A ring.

NASA explained: “In order to avoid the unlikely possibility of Cassini someday colliding with one of these moons, NASA has chosen to safely dispose of the spacecraft in the atmosphere of Saturn“.

The entirety of the main rings can be seen here, but due to the low viewing angle, the rings appear extremely foreshortened“, says NASA.

Ring scientists had thought the small moon Janus was responsible for confining the outer edge of the A ring.

Together they are strong. Scientists said if the magnetic field tilt is greater than 0.016 degrees, they should be able to “nail down the true length of the planet’s day.”

There are hundreds of density waves spread over the A ring that are generated by different moon resonances.

These resonance markers enabled scientists to deduce that the moons gravitational influence help to slow and reduce the spreading ring’s momentum.

Mima’s gravitational nudges keep the ring trimmed by pushing any wayward particles back inside.

When you enlarge the image, you can get lost in the geometric intricacies of the rings, which are made up of rock and ice. “That’s the novelty of this idea“.

Commenting on their findings, Tajeddine said nobody imagined that the rings were held by a shared responsibility.

The panorama makes it feel like the rings go on forever, though NASA says they actually stretch out over a distance of around 175,000 miles.

The team, which included Cassini participating scientist Mark Perry from the Johns Hopkins University Applied Physics Laboratory, not only discovered water raining down from the rings, but also methane, which was a surprise, since the team expected the gas was too volatile to survive within Saturn’s rings or its atmosphere.

Janus has been getting all of the credit for stopping the A ring, which has been unfair to the other moons“.

The team unveiled their new discoveries at the latest American Astronomical Society Division for Planetary Science.

In addition to Burns and Tajeddine, the paper’s co-authors are Philip D. Nicholson, professor of astronomy; Maryame El Moutamid, research associate; and Pierre-Yves Longaretti of the Institut de Planétologie et d’Astrophysique de Grenoble, France.

Linda Splicer, one of the mission’s project scientists, said: “There are whole careers to be forged in the analysis of data from Cassini“.

Please like, share and tweet this article.

Pass it on: New Scientist