Month: January, 2018

Sky Watching Tips And Tricks For Cold Northern Nights

For much of the contiguous United States this winter has been marked by perpetual ice, snow as well as the now infamous polar vortex.

Such conditions might make even the most committed stargazer think twice before venturing outdoors.

Stepping outside to enjoy a view of the constellation Orion, Jupiter or even just the waxing moon these frosty nights takes only a minute or two, but if you plan to stay outside longer, remember that enjoying the starry winter sky requires protection against the cold temperatures.




The best garments are a hooded ski parka and ski pants, both of which are lightweight and provide excellent insulation. And remember your feet.

Two pairs of warm socks in loose-fitting shoes are quite adequate; for protracted observing on bitter-cold nights wear insulated boots.

Reach for the binoculars

In weather like this, one quickly will realize the advantage of using a pair of good binoculars over a telescope.

A person who attempts to set even a so-called “portable” scope up in bitter temperatures or blustery winds might give up even before he or she got started.

But binoculars can be hand-held and will produce some quickly magnified images of celestial objects before rushing back inside to escape the frigidity.

Transparency

In their handy observing guide, “The Stars” (Golden Press, N.Y.), authors Herbert Zim and Robert Baker write that “the sky is never clearer than on cold, sparkling winter nights.

“It is at these times that the fainter stars are seen in great profusion. Then the careful observer can pick out dim borderline stars and nebulae that cannot be seen when the sky is less clear.

What Zim and Baker were referring to is sky transparency, which is always at its best during the winter season. That’s because Earth’s atmosphere is not as hazy because it is less moisture laden.

Cold air has less capacity to hold moisture, therefore the air is drier and thus much clearer as opposed to the summer months when the sky appears hazier.

But this clarity can also come at a price.

Seeing through the twinkles

If you step outside on one of those “cold, sparkling nights” you might notice the stars twinkling vibrantly.

This is referred to as scintillation, and to the casual observer looking skyward, they might think of such a backdrop as the perfect night for an astronomer, but it isn’t.

This is because when looking skyward, skywatchers are trying to see the sky through various layers of a turbulent atmosphere.

Were we to train a telescope on a star, or a bright planet like Mars, what we would end up with is a distorted image that either seems to shake or quiver or simply “boils” to the extent that you really can’t see very much in terms of any detail.

Forecasting sky conditions

If you own a telescope, you don’t need to wait for balmy summer nights to get good views. Usually, a few days after a big storm or frontal passage, the center of a dome of high pressure will build in to bring clear skies and less wind.

And while the sky might not seem quite as “crisp” or “pristine” as it was a few days earlier, the calming effect of less winds will afford you a view of less turbulent and clearer images through your telescope.

More comfortable nights ahead

If you plan on heading out on a cold winter’s night — and if you’re doing it while under a dome of high pressure — the fact that there is less wind means not only potentially good seeing, but also more comfort viewing conditions.

The end of winter is in sight though. The Northern Hemisphere is officially halfway through the winter season and milder, more comfortable nights are within reach.

Please like, share and tweet this article.

Pass it on: Popular Science

 

Ocado’s Collaborative Robot Is Getting Closer To Factory Work

Retailer Ocado is getting closer to creating an autonomous humanoid robot that can help engineers fix mechanical faults in its factories.

The firm’s latest robot, ARMAR-6, has a human-looking torso, arms with eight degrees of freedom, hands that can grip and a head with cameras inside. But it doesn’t have legs and is equipped with a large wheeled base that lets it move around.

To this end, ARMAR-6 uses a three camera systems inside its head to help it detect and recognize humans and objects; speech recognition helps it understand commands; and its hands are able to pick-up and grasp objects.




At present, the robot is still a prototype but getting to this point has taken two and a half years. Four European universities have been working to create each of the systems, under the EU’s Horizon2020 project.

The retailer has already automated large parts of its warehouse operation. Its 90,000-square-metre Dordon warehouse, near Birmingham, has 8,000 crates moving around it at any one time, across 35 kilometers of conveyor belts.

However, components can break and require maintenance. This is where future versions of the ARMAR-6 robot will come in.

Other training tasks that have been worked on include getting it to find a spray bottle, pick it up, and then handing it across to a human.

 

At the moment, this is a prescribed sequence,” Deacon says. “But the ultimate aim is for the robot to be able to recognize where in a maintenance task the technician is and understand from its behavioral repertoire what will be a good thing for it to do in order to assist the technician.”

Ocado’s humanoid project runs under the banner of Secondhands and involves engineers and computer scientists from EPFL, Karlsruhe Institute of Technology, Sapienza Università di Roma, and University College London.

Each university has developed individual elements of the ARMAR-6 system.

The firm first laid out the ambitious plans for the collaborative robot in 2015. Since then, it has worked on a number of robotics projects.

Most recently, it revealed its robotic arm that can pick-up items using suction. It’s planned the gripper will be used in the company’s factories to lift and place thousands of different items into the shopping of its customers.

Please like, share and tweet this article.

Pass it on: New Scientist

Is Yoga Good Exercise?

From CrossFit to Insanity workouts, exercise has lately trended toward the extreme. But physical activity doesn’t always have to be vigorous to be effective.

While it may seem mellow compared to most training programs, yoga’s health benefits keep pace—and often outdistance—what many people would call “traditional” forms of exercise.

For starters, research shows regular yoga practice lowers your risk for heart disease and hypertension. Yoga may also lessen symptoms of depression, headaches, diabetes, some forms of cancer and pain-related diseases like arthritis.




Yoga also seems to combat weight gain.

One 4-year study from Seattle’s Fred Hutchinson Cancer Research Center found middle-aged adults who practiced yoga at least once a week gained 3 fewer pounds than those who stuck with other forms of exercise.

The same study found overweight adults who practice yoga lost 5 pounds, while a non-yoga group gained 13 pounds. Those results held even when the authors accounted for different eating habits.

How can a little bending and stretching do all that? Unlike exercises like running or lifting weights—both of which crank up your heart rate and stimulate your nervous system—yoga does just the opposite.

It puts you in a parasympathetic state, so your heart rate goes down and blood pressure goes down,” says Dr. Tiffany Field, director of the Touch Research Institute at the University of Miami School of Medicine.

Field has published an in-depth review of yoga’s potential health benefits. She says the types and varieties of movement involved in yoga stimulate pressure receptors in your skin, which in turn ramp up your brain and body’s vagal activity.

Your vagus nerve connects your brain to several of your organs, and it also plays a role in hormone production and release.

All of this may explain yoga’s research-backed ties to a healthier heart, as well as its ability to slash your stress, improve your mood, quell your appetite and help you sleep more soundly, Field says.

When you consider the health perks linked to each of those brain and body benefits—lower inflammation, lower body weight, lower disease risk—you could make an argument that few activities are as good for you as yoga.

One thing yoga doesn’t do, though, is burn loads of calories. Even hot forms of yoga like Bikram result in modest energy expenditures—roughly the number of calories you’d burn during a brisk walk.

While more and more research suggests calories shouldn’t be your sole focus when it comes to diet and exercise, there’s no question that running, swimming, lifting weights and other more-vigorous forms of exercise are great for your brain and body.

Yoga is unquestionably good for you, Field says, but it should be done in tandem with traditional forms of physical activity—not in place of them.

Please like, share and tweet this article.

Pass it on: New Scientist

Mysterious Dark Matter May Not Always Have Been Dark

The nature of dark matter is currently one of the greatest mysteries in science. The invisible substance — which is detectable via its gravitational influence on “normal” matter — is thought to make up five-sixths of all matter in the universe.

Astronomers began suspecting the existence of dark matter when they noticed the cosmos seemed to possess more mass than stars could account for.

For example, stars circle the center of the Milky Way so fast that they should overcome the gravitational pull of the galaxy’s core and zoom into the intergalactic void.

Most scientists think dark matter provides the gravity that helps hold these stars back.




Scientists have mostly ruled out all known ordinary materials as candidates for dark matter. The consensus so far is that this missing mass is made up of new species of particles that interact only very weakly with ordinary matter.

One potential clue about the nature of dark matte rhas to do with the fact that it’s five times more abundant than normal matter, researchers said.

This may seem a lot, and it is, but if dark and ordinary matter were generated in a completely independent way, then this number is puzzling,” said study co-author Pavlos Vranas, a particle physicist at Lawrence Livermore National Laboratory in Livermore, California.

Instead of five, it could have been a million or a billion. Why five?

The researchers suggest a possible solution to this puzzle: Dark matter particles once interacted often with normal matter, even though they barely do so now.

The protons and neutrons making up atomic nuclei are themselves each made up of a trio of particles known as quarks.

The researchers suggest dark matter is also made of a composite “stealth” particle, which is composed of a quartet of component particles and is difficult to detect.

The scientists’ supercomputer simulations suggest these composite particles may have masses ranging up to more than 200 billion electron-volts, which is about 213 times a proton’s mass.

Quarks each possess fractional electrical charges of positive or negative one-third or two-thirds. In protons, these add up to a positive charge, while in neutrons, the result is a neutral charge.

Quarks are confined within protons and neutrons by the so-called “strong interaction.

The researchers suggest that the component particles making up stealth dark matter particles each have a fractional charge of positive or negative one-half, held together by a “dark form” of the strong interaction.

Stealth dark matter particles themselves would only have a neutral charge, leading them to interact very weakly at best with ordinary matter, light, electric fields and magnetic fields.

The researchers suggest that at the extremely high temperatures seen in the newborn universe, the electrically charged components of stealth dark matter particles could have interacted with ordinary matter.

However, once the universe cooled, a new, powerful and as yet unknown force might have bound these component particles together tightly to form electrically neutral composites.

Stealth dark matter particles should be stable — not decaying over eons, if at all, much like protons.

However, the researchers suggest the components making up stealth dark matter particles can form different unstable composites that decay shortly after their creation.

These unstable particles might have masses of about 100 billion electron-volts or more, and could be created by particle accelerators such as the Large Hadron Collider (LHC) beneath the France-Switzerland border. They could also have an electric charge and be visible to particle detectors, Vranas said.

Experiments at the LHC, or sensors designed to spot rare instances of dark matter colliding with ordinary matter, “may soon find evidence of, or rule out, this new stealth dark matter theory,” Vranas said in a statement.

If stealth dark matter exists, future research can investigate whether there are any effects it might have on the cosmos.

The scientists, the Lattice Strong Dynamics Collaboration, will detail their findings in an upcoming issue of the journal Physical Review Letters.

Please like, share and tweet this article.

Pass it on: New Scientist

This City In Alaska Is Warming So Fast, Algorithms Removed The Data Because It Seemed Unreal

Last week, scientists were pulling together the latest data for the National Oceanic and Atmospheric Administration’s monthly report on the climate when they noticed something strange: One of their key climate monitoring stations had fallen off the map.

All of the data for Barrow, Alaska — the northernmost city in the United States — was missing.

No, Barrow hadn’t literally been vanquished by the pounding waves of the Arctic Sea (although it does sit precipitously close).




The missing station was just the result of rapid, man-made climate change, with a runaway effect on the Arctic.

The temperature in Barrow had been warming so fast this year, the data was automatically flagged as unreal and removed from the climate database.

It was done by algorithms that were put in place to ensure that only the best data gets included in NOAA’s reports.

They’re handy to keep the data sets clean, but this kind of quality-control algorithm is good only in “average” situations, with no outliers. The situation in Barrow, however, is anything but average.

If climate change is a fiery coal-mine disaster, then Barrow is our canary. The Arctic is warming faster than any other place on Earth, and Barrow is in the thick of it.

With less and less sea ice to reflect sunlight, the temperature around the North Pole is speeding upward.

The missing data obviously confused meteorologists and researchers, since it’s a record they’ve been watching closely, according to Deke Arndt, the chief of NOAA’s Climate Monitoring Branch.

He described it as “an ironic exclamation point to swift regional climate change in and near the Arctic.

Just this week, scientists reported that the Arctic had its second-warmest year — behind 2016 — with the lowest sea ice ever recorded.

The announcement came at the annual meeting of the American Geophysical Union, and the report is topped with an alarming headline: “Arctic shows no sign of returning to reliably frozen region of recent past decades.

Changes in the Arctic extend beyond sea ice. Vast expanses of former permafrost have been reduced to mud. Nonnative species of plants, types that grow only in warmer climates, are spreading into what used to be the tundra.

Nowhere is this greening of the Arctic happening faster than the North Slope of Alaska, observable with high-resolution clarity on NOAA satellite imagery.

The current observed rate of sea ice decline and warming temperatures are higher than at any other time in the last 1,500 years, and likely longer than that,” the NOAA report says.

At no place is this more blatantly obvious than Barrow itself, which recently changed its name to the traditional native Alaskan name Utqiagvik.

In just the 17 years since 2000, the average October temperature in Barrow has climbed 7.8 degrees. The November temperature is up 6.9 degrees.

The December average has warmed 4.7 degrees. No wonder the data was flagged.

The Barrow temperatures are now safely back in the climate-monitoring data sets. Statisticians will have to come up with a new algorithm to prevent legitimate temperatures from being removed in the future.

New algorithms for a new normal.

Please like, share and tweet this article.

Pass it on: Popular Science

Most Precise Measurement Of The Proton’s Mass

What is the weight of a proton? Scientists from Germany and Japan have made an important step toward better understanding this fundamental constant.

By means of precision measurements on a single proton, they were able to improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton more accurately, the group of physicists from the Max Planck Institute for Nuclear Physics in Heidelberg and RIKEN in Japan performed an important high-precision measurement.

In a greatly advanced Penning trap system, designed by Sven Sturm and Klaus Blaum from MPI-K, using ultra-sensitive single particle detectors that were partly developed by RIKEN’s Ulmer Fundamental Symmetries Laboratory.




The proton is the nucleus of the hydrogen atom and one of the basic building blocks of all other atomic nuclei. Therefore, the proton’s mass is an important parameter in atomic physics: it is one of the factors that affect how the electrons move around the atomic nucleus.

This is reflected in the spectra, i.e., the light colours (wavelengths) that atoms can absorb and emit again. By comparing these wavelengths with theoretical predictions, it is possible to test fundamental physical theories.

Further, precise comparisons of the masses of the proton and the antiproton may help in the search for the crucial difference – besides the reversed sign of the charge – between matter and antimatter.

Penning traps are well-proven as suitable “scales” for ions. In such a trap, it is possible to confine, nearly indefinitely, single charged particles such as a proton, for example, by means of electric and magnetic fields.

Inside the trap, the trapped particle performs a characteristic periodic motion at a certain oscillation frequency. This frequency can be measured and the mass of the particle calculated from it.

In order to reach the targeted high precision, an elaborate measurement technique was required.

The carbon isotope 12C with a mass of 12 atomic mass units is defined as the mass standard for atoms. “We directly used it for comparison,” says Sven Sturm.

First we stored each one proton and one carbon ion (12C6+) in separate compartments of our Penning trap apparatus, then transported each of the two ions into the central measurement compartment and measured its motion.

From the ratio of the two measured values the group obtained the proton’s mass directly in atomic units. The measurement compartment was equipped with specifically developed purpose-built electronics.

Andreas Mooser of RIKEN’s Fundamental Symmetries Laboratory explains its function: “It allowed us to measure the proton under identical conditions as the carbon ion despite its about 12-fold lower mass and 6-fold smaller charge.”

The resulting mass of the proton, determined to be 1.007276466583(15)(29) atomic mass units, is three times more precise than the presently accepted value.

The numbers in parentheses refer to the statistical and systematic uncertainties, respectively.

Intriguingly, the new value is significantly smaller than the current standard value.

Measurements by other authors yielded discrepancies with respect to the mass of the tritium atom, the heaviest hydrogen isotope (T = 3H), and the mass of light helium (3He) compared to the “semiheavy” hydrogen molecule HD (D = 2H, deuterium, heavy hydrogen).

Our result contributes to solving this puzzle, since it corrects the proton’s mass in the proper direction,” says Klaus Blaum.

Florian Köhler-Langes of MPIK explains how the researchers intend to further improve the precision of their measurement: “In the future, we will store a third ion in our trap tower. By simultaneously measuring the motion of this reference ion, we will be able to eliminate the uncertainty originating from fluctuations of the magnetic field.”

The work was published in Physical Review Letters.

Please like, share and tweet this article.

Pass it on: New Scientist

‘Megastorms’ That Throw Thousand-Tonne Boulders Over Clifftops May Be On Their Way Back Thanks To Global Warming

Standing atop a 60-foot cliff overlooking the Atlantic, James Hansen — the retired NASA scientist sometimes dubbed the “father of global warming” — examines two small rocks through a magnifying glass.

Towering above him is the source of one of the shards: a huge boulder from a pair locals call “the Cow and the Bull,” the largest of which is estimated to weigh more than 1,000 tons.

The two giants have long been tourist attractions along this rocky coast. Perched not far from the edge of a steep cliff that plunges down into blue water, they raise an obvious question: How did they get up here?




Compounding the mystery, these two are among a series of giant boulders arranged in an almost perfect line across a narrow part of this 110-mile-long, wishbone-shaped island.

Hansen and Paul Hearty — a wiry, hammer-slinging geologist from the University of North Carolina at Wilmington who has joined him here as a guide — have a theory about these rocks.

It’s so provocative — and, frankly, terrifying — that some critics wonder whether the man who helped spawn the whole debate about the dangers of climate change has finally gone too far.

The idea is that Earth’s climate went through a warming period just over 100,000 years ago that was similar in many ways to the warming now attributed to the actions of man.

And the changes during that period were so catastrophic, they spawned massively powerful superstorms, causing violent ocean waves that simply lifted the boulders from below and deposited them atop this cliff.

If this is true, the effort kicking off in Paris this week to hold the world’s nations to strict climate targets may be even more urgent than most people realize.

Hearty, an expert on Bahamas geology, first published in 1997 the idea that Cow and Bull were hurled to their perch by the sea.

Since then, Hansen has given the work much added attention by framing the boulders as Exhibit A for his dire view of climate change — which has drawn doubters in the scientific community.

But as Hansen examines the rocks on a recent morning, Hearty explains some of the evidence.

In particular, Hearty points out that the tiny grains that constitute the boulder rocks are more strongly cemented together and less likely to crumble than other rocks nearby, a sign that the boulders are older than what’s beneath them.

While there is a suggestion in the scientific literature that the boulders were simply left behind after surrounding rocks eroded away, Hearty and another leading Bahamas geology expert, Pascal Kindler of the University of Geneva in Switzerland, agree that the boulders are older than the surface upon which they rest and, thus, probably were moved by the sea.

Even the tourist placard near here takes their side, saying the ocean “lifted them atop the ridge.” But exactly how it could have done that is another matter.

Scientists have tended to attribute odd boulders such as these to tsunamis — there’s little doubt they have the power to move large rocks.

One recent study found that in the Cape Verde islands, 73,000 years ago, a 300-foot-high mega-tsunami carried boulders as large as 700 tons atop a cliff almost as high as the Eiffel Tower.

But more recent studies have also attributed large boulder movements to storms. And now into the fray has stepped Hansen, who, in 1988 testimony before Congress, put the climate issue on the map by contending — correctly, as it turned out — that global warming had already begun.

If he is also right about the boulders, Earth could be in for a rough ride.

And even if not, one thing is clear: Cow and Bull present a scientific mystery whose solution may serve as a reminder of just how violent and dynamic a planet we live on.

Please like, share and tweet this article.

Pass it on: New Scientist

A New Study Shows That Astronauts Get Taller In Space

Astronauts in space can grow up to 3 percent taller during the time spent living in microgravity, NASA scientists say. That means that a 6-foot-tall person could gain as many as 2 inches while in orbit.

While scientists have known for some time that astronauts experience a slight height boost during a months-long stay on the International Space Station, NASA is only now starting to use ultrasound technology to see exactly what happens to astronauts’ spines in microgravity as it occurs.

Today there is a new ultrasound device on the station that allows more precise musculoskeletal imaging required for assessment of the complex anatomy and the spine,” the study’s principal investigator Scott Dulchavsky said in a statement.




The crew will be able to perform these complex evaluations in the next year due to a newly developed Just-In-Time training guide for spinal ultrasound, combined with refinements in crew training and remote guidance procedures.

A better understanding of the spine’s elongation in microgravity could help physicians develop more effective rehabilitation techniques to aid astronauts in their return to Earth’s gravity following space station missions.

Past studies have shown that when the spine is not exposed to the pull of Earth’s gravity, the vertebra can expand and relax, allowing astronauts to actually grow taller. That small gain is short lived, however.

Once the astronauts return to Earth, their height returns to normal after a few months. But still, scientists haven’t been able to examine the astronaut’s spinal columns when experiencing the effects of microgravity until now.

This month, astronauts will begin using the ultrasound device to scan each other’s backs to see exactly what their spines look like after 30, 90 and 150 days in microgravity.

Researchers will see the medical results in real time as the astronaut take turns scanning their spines of their crewmates.

Astronauts typically visit the space station in six-month increments, allowing for long-term studies of how the human body changes over time in microgravity.

Ultrasound also allows us to evaluate physiology in motion, such as the movement of muscles, blood in vessels, and function in other systems in the body,” Dulchavsky said.

Physiological parameters derived from ultrasound and Doppler give instantaneous observations about the body non-invasively without radiation.”

Astronauts typically visit the space station in six-month increments, allowing for long-term studies of how the human body changes over time in microgravity.

Please like, share and tweet this article.

Pass it on: Popular Science

The Largest Prime Number Was Discovered By A FedEx Employee

A FedEx employee in Tennessee has discovered the largest known prime number.

Germantown, Tenn., resident John Pace found the number through his volunteer work with the Great Internet Mersenne Prime Search (GIMPS), a project that crowd sources computing power to search for a subset of prime numbers called Mersenne primes.

Like a normal prime number, these can only be divided by themselves and one. What sets them apart is that they can all be expressed as the number 2 raised to a given power minus one.




The newly discovered Mersenne prime, called M77232917, can be expressed as 2 to the 77,232,917 power minus one. It’s the 50th Mersenne prime to be discovered and it’s more than 23 million digits long.

Pace might be the only person in history who went into math for the money.

He told NPR, “There was a $100,000 prize attached to finding the first prime that had a 10 million digit result, and I was like, ‘Well you know, I’ve got as much chance as anybody else.’

He has been participating in the program for 14 years and this is his first discovery.

The previous longest-known prime number was discovered in January of 2016 at the University of Central Missouri. It contains 22 million digits and is also a Mersenne prime.

Large prime numbers are important for the future of computing and cyber security, and the search is already on for larger numbers.

The Electronic Frontier Foundation is offering a prize of $150,000 for finding the first prime number with one hundred million digits and $250,000 for finding the first prime with one billion digits.

Please like, share and tweet this articles

Pass it on: Popular Science