News Posts

Breakthrough In Self-Healing Materials

Share on FacebookTweet about this on Twitter

Marek Urban and his team wrote about how they were able to give self-healing qualities to polymers that are used in relatively inexpensive commodities, such as paints, plastics and coatings.

The next step is to go from making small amounts in a lab to producing large quantities.

It’s not available at the industrial scale, but it’s very close,” said Urban, who is the J.E. Sirrine Foundation Chair and Professor in the Department of Materials Science and Engineering at Clemson.

Researchers have been making small batches of self-healing polymers for the last two decades, but producing them on a commercial scale has so far been largely cost prohibitive.

Urban said he and his team took advantage of interactions between co-polymers that he likened to spaghetti strands with little brushes on the side.




The longer the spaghetti strands get, the more they become entangled, he said. The side groups interlock like two interlaced hands, making it harder to pull them apart, Urban said.

At the same time, they like each other,” he said. “So, when you pull them out, they come back together. It becomes self-healable at that point.

As simple as this may sound, these studies also revealed that ubiquitous and typically weak van der Waals interactions in plastics, when oriented, will result in self-healing.

“This discovery will impact the development of sustainable materials using weak bonding which becomes collectively very strong when oriented.

Plants self-repair naturally.

What’s significant about his latest breakthrough is that if a company wanted to bring the technology to market, it would no longer have to build a new factory to produce self-healing polymers, Urban said.

Urban estimated that increasing the scale to make polymers or paints by the hundreds of gallons could be done in six to 12 months.

For anybody who wants to make these types of self-healing materials, they would have to essentially design a synthetic process and scale it up,” Urban said.

The key is that the scale-up process would have to be precisely controlled. There is a huge difference between making something in the lab and scaling it up. We know the technology is available for them.”

Please like, share and tweet this article.

Pass it on: Popular Science

Leave a Reply

Your email address will not be published. Required fields are marked *