News Posts

Building Block for ‘Vinyl Life’ Found on Saturn’s Moon Titan

Share on FacebookTweet about this on Twitter

saturn

When winter comes to Titan’s poles, it brings seasonal downpours of toxic molecules that could, under the right conditions, assemble themselves into structures like the biological membranes that encase living cells on Earth.

Called vinyl cyanide, those molecules are created high in Titan’s atmosphere, and now, scientists know there’s a truckload of them tucked into the moon’s orange haze that probably rain down on its icy surface.

More than 10 billion tons of it could be floating in Ligeia Mare, the second-largest lake in the north, according to the paper published today in Science Advances.




What the compound does once it gets into Titan’s lakes, and whether it actually self-assembles, is still a mystery. But based on the molecule’s hypothesized ability to form membranes, the discovery raises the question of whether one of life’s key requirements might be easily achievable in Titan’s alien oceans.

Titan has unique and weird chemistry, and all the evidence we have so far suggests there’s a possibility for it to be doing a lot of things we think are necessary for life to exist,” says Johns Hopkins University’s Sarah Hörst.

Everything we have ever learned from planetary science tells us that other worlds are way more creative than we are.

The largest of Saturn’s moons has intrigued astrobiologists for decades: Titan is more or less Earthlike except for its completely different chemistry.

saturn

It’s the only other world in the solar system where liquids stream and surge across the surface, it clings to a puffy nitrogen atmosphere, and it’s literally covered in complex organic compounds.

But temperatures on Titan plunge so low (-290°F) that water is hard as rock, so liquid ethane and methane flow into its seas instead.

The dunes near its equator aren’t made of sand but of frozen plastics, and it rains compounds normally synthesized in chemical processing plants on Earth.

In other words, if life evolved on Titan, its molecular machinery would be fine-tuned for efficiency in hydrocarbons rather than water.

saturn

There is nowhere else in the entire solar system that has those liquid hydrocarbon lakes,” says study coauthor Conor Nixon of NASA’s Goddard Space Flight Center. “You need a whole new biology to support that.”

The idea that vinyl cyanide might form something similar to Earthly cells comes from a research group at Cornell University.

That team looked at about a dozen of Titan’s atmospheric molecules and used computer models to determine which of them had the ability to self-assemble into membrane-like structures called azotosomes.

Helmed by then-graduate student James Stevenson, the team found that vinyl cyanide had the best chance of forming something that could be astrobiologically relevant in Titan’s extremely cold, liquid methane seas.

saturn

Like Earthy membranes, the simulated configuration was both strong and flexible, possibly forming a hollow sphere capable of sequestering other ingredients necessary for life, and its tendencies to aggregate or separate in methane were just right.

So far, no one has done the actual lab experiment needed to prove vinyl cyanide can form membranes. It’s difficult working with cryogenic methane and poisonous cyanide and after all, there’s only so much you can do to replicate what’s happening on Titan when you live on Earth.

We still are at the very beginning of the experimental work that’s really necessary to understand Titan’s lakes,” Hörst says. “But we’re never going to fundamentally know what the system is doing until we’re able to go back.”

Please like, share and tweet this article.

Pass it on: New Scientist

Leave a Reply

Your email address will not be published. Required fields are marked *