Tag: answers with joe

Ray Kurzweil’s Craziest Predictions About The Future

Ray Kurzweil’s predictions have an 86% success rate. But what he sees in the next 50 years are mind-blowing.
Support the channel on Patreon! www.patreon.com/answerswithjoe
Check out Ray’s books for more about his predictions for the future:
The Age of Intelligent Machines http://amzn.to/1UMU4YM
The Singularity is Near http://amzn.to/1UMUfn1
=============
Subscribe! www.answerswithjoe.com
Follow me at answerswithjoe on:
Facebook
Twitter
Instagram
Snapchat
=============
Ray Kurzweil is an inventor and futurist who has championed the Law of Accelerating Returns, claiming that computer technology is following an exponential path that will lead to the Singularity – a point in time when computer power reaches super intelligence and all things are possible.
He predicts the Singularity by the year 2045. But that’s just one of his predictions for the future which also involves:
Autonomous cars
Nanotechnology
Simulated worlds
Uploading consciousness Immortality
===============
Links: Jean-Marc Cote 1900 French World Exposition
Kurzweil’s track record
Kurzweil’s predictions
Kurzweil’s prediction timeline
George Hotz’s self-driving car hack
ColdFusionTV video on AlphaGo

5 Reasons Why You Wouldn’t Exist Without The Moon

We really take the moon for granted. But without it, we may not even exist. Here’s 5 reasons why.

Support the channel on Patreon: www.patreon.com/answerswithjoe

Follow me @answerswithjoe at all my places!

Instagram: https://instagram.com/answerswithjoe

Snapchat: https://www.snapchat.com/add/answersw…

Facebook: http://www.facebook.com/answerswithjoe

Twitter: https://www.twitter.com/answerswithjoe

What Is Life? A Surprisingly Complex Question

What is life? Seems like a really simple question. But it’s actually more complex than you can imagine. And the search for the answer leads to other questions and thoughts that change our very perspective of ourselves.

Subscribe – http://answerswithjoe.com

Follow me!

Facebook: http://www.facebook.com/answerswithjoe

Twitter, Periscope, and Blab: @joescottwriter

Instagram: @joescottcreative

==================

Check out these videos also on this topic, they’re really good:

Are viruses Alive – This Place https://www.youtube.com/watch?v=phgAS…

What is life? – Kurzgesagt https://www.youtube.com/watch?v=QOCaa…

Where Is All The Antimatter?

Every time a particle is created, a corresponding anti-particle is also created. So where is all the antimatter? Today I discuss some theories.

Support me on Patreon! http://www.patreon.com/answerswithjoe

Follow me at all my places!

Instagram: https://instagram.com/answerswithjoe

Snapchat: https://www.snapchat.com/add/answersw…

Facebook: http://www.facebook.com/answerswithjoe

Twitter: https://www.twitter.com/answerswithjoe

LINKS LINKS LINKS

TED Ed https://www.youtube.com/watch?v=CtR5E…

Veritasium https://www.youtube.com/watch?v=g20JZ…

http://www.npr.org/sections/thetwo-wa…

http://www.symmetrymagazine.org/artic…

https://futurism.com/new-proposal-mat…

The Science of Addiction

Is it the drugs that get people hooked… or is it something else? The science behind addiction and how our drug laws approach it the wrong way.

Special thanks to Jac St. John at The Vegetarian Baker https://www.youtube.com/user/TheVeget…

and Sarah Hardy of Sensational Finds
https://www.youtube.com/user/Sensatio…

For their help with the intro to this video. This was shot as part of the YouTube NextUp program in August, at the YouTube space in New York. The set was constructed for a series on Great Big Story starring Philipe Cousteau: https://www.youtube.com/watch?v=yTvvv…

Check out the video Jac shot in the submarine for his channel!: https://www.youtube.com/watch?v=Pb2ib…

Support me on Patreon!
http://www.patreon.com/answerswithjoe

Follow me at all my places!

Instagram: https://instagram.com/answerswithjoe

Snapchat: https://www.snapchat.com/add/answersw…

Facebook: http://www.facebook.com/answerswithjoe

Twitter: https://www.twitter.com/answerswithjoe

 

LINKS LINKS LINKS:

Johann Hari’s TED talk on addiction: https://www.ted.com/talks/johann_hari…

Portugal https://www.washingtonpost.com/news/w…

Rat Park Comic http://www.stuartmcmillen.com/comics_…

Statistics from National Overdose Day http://www.overdoseday.com/resources/…

The science of addiction http://www.shatterproof.org/pages/sci…

Portugal’s drug policy and its results http://www.independent.co.uk/news/wor…

Kurzgesagt https://www.youtube.com/watch?v=ao8L-…

Nuggets (a short animated film that hauntingly depicts the process of addiction) https://www.youtube.com/watch?v=HUngL…

Why Is Elon Musk Digging Tunnels Under Los Angeles?

So back in January of 2016, Musk was speaking at SpaceX’s Hyperloop pod competition, when he said this: “It’s a really simple and obvious idea and I wish more people would do it: build more tunnels. Tunnels are great. It’s just a hole in the ground, it’s not that hard.

But if you have tunnels in cities you would massively alleviate congestion and you could have tunnels at all different levels – you could probably have 30 layers of tunnels and completely fix the congestion problem in high-density cities.

So I strongly recommend tunnels.” But it was something he just kinda said off the cuff and nobody but the most ardent Musk-watchers paid any attention to. He claims to have built a machine that can dig tunnels for transportation 500 to 1000% more efficiently than current boring machines. And his logic is that people in cities live and work in a 3D space, in vertical buildings that can house more people. But our city transportation is on a 2D plane, meaning all these vertically packed people are now crammed into a horizontal space. By creating a 3D transportation grid, we can alleviate the congestion and drive like civilized human beings.

And his logic is that people in cities live and work in a 3D space, in vertical buildings that can house more people. But our city transportation is on a 2D plane, meaning all these vertically packed people are now crammed into a horizontal space. By creating a 3D transportation grid, we can alleviate the congestion and drive like civilized human beings.

Now, there are a couple of criticisms of this plan, one is that this idea’s been around for over a hundred years, it’s called subways. And subways are great for densely packed urban areas like New York but for cities like LA, or Dallas for that matter, where things are spread far apart, not so much.

For example, it’s a 20 or 30 minute drive just to get to my closest light rail station, at that point, I might as well just drive the rest of the way. It’s just not practical. But underground highways under strategic high-traffic arteries could make a big difference. And reducing the time cars are idling in traffic could cut down on pollution as well. The other criticism is that building tunnels is not nearly as easy as it sounds, even with a giant high-tech earthworm machine doing all the work. Obviously in urban areas there’s all kinds of things we’ve put

And reducing the time cars are idling in traffic could cut down on pollution as well. The other criticism is that building tunnels is not nearly as easy as it sounds, even with a giant high-tech earthworm machine doing all the work. Obviously in urban areas there’s all kinds of things we’ve put

Now, there are a couple of criticisms of this plan, one is that this idea’s been around for over a hundred years, it’s called subways. And subways are great for densely packed urban areas like New York but for cities like LA, or Dallas for that matter, where things are spread far apart, not so much.

For example, it’s a 20 or 30 minute drive just to get to my closest light rail station, at that point, I might as well just drive the rest of the way. It’s just not practical. But underground highways under strategic high-traffic arteries could make a big difference. And reducing the time cars are idling in traffic could cut down on pollution as well. The other criticism is that building tunnels is not nearly as easy as it sounds, even with a giant high-tech earthworm machine doing all the work.

And reducing the time cars are idling in traffic could cut down on pollution as well. The other criticism is that building tunnels is not nearly as easy as it sounds, even with a giant high-tech earthworm machine doing all the work. Obviously in urban areas there’s all kinds of things we’ve put

And reducing the time cars are idling in traffic could cut down on pollution as well. The other criticism is that building tunnels is not nearly as easy as it sounds, even with a giant high-tech earthworm machine doing all the work. Obviously in urban areas there’s all kinds of things we’ve put

And reducing the time cars are idling in traffic could cut down on pollution as well. The other criticism is that building tunnels is not nearly as easy as it sounds, even with a giant high-tech earthworm machine doing all the work. Obviously in urban areas there’s all kinds of things we’ve put

And reducing the time cars are idling in traffic could cut down on pollution as well. The other criticism is that building tunnels is not nearly as easy as it sounds, even with a giant high-tech earthworm machine doing all the work. Obviously in urban areas there’s all kinds of things we’ve put

But underground highways under strategic high-traffic arteries could make a big difference. And reducing the time cars are idling in traffic could cut down on pollution as well. The other criticism is that building tunnels is not nearly as easy as it sounds, even with a giant high-tech earthworm machine doing all the work. Obviously in urban areas there’s all kinds of things we’ve put

The other criticism is that building tunnels is not nearly as easy as it sounds, even with a giant high-tech earthworm machine doing all the work. Obviously in urban areas there’s all kinds of things we’ve put under the ground in terms of sewers, gas lines, telecommunication lines and so forth.

But we at least know where those are, what we don’t know is other things like pockets of gas, unstable rocks, hidden fault lines, and so forth. But… I’m sure all those things will be addressed before any large-scale tunneling begins in LA., there’s a mountain of bureaucratic red tape to get past before that happens. Which should put completion around the Fall of… never. A side benefit of this tunnel machine would be for SpaceX’s future Mars

A side benefit of this tunnel machine would be for SpaceX’s future Mars colonies, since boring underground would be the best protection against cosmic rays. Now this is of course nowhere near Elon’s first foray into transportation, I mentioned earlier his hyper loop competition, well, he just hosted another competition in January. 27 teams entered designs, of those, 3 were picked to actually run, and of those, two won awards, one for design, and the other for speed, maxing out at 90 kilometers per hour, or 55 miles per hour.

That’s a far cry from the 900 miles per hour predicted for the hyper loop, but it’s early yet, and it’s only a one-mile stretch of track, so it’s probably not getting up to top speed.

Graphene Supercapacitors Are About To Change The World – Here’s How

We live our lives through portable devices, and the race is on to create better energy storage for those devices. Could graphene supercapacitors be the holy grail?

So before I can explain how super capacitors will fix this, let’s back up and explain how batteries work in the first place.

To make it simple, batteries work by moving electrons from a negatively charged material called an anode to a positively charged material called the cathode, and the device siphons off those electrons to power the device.

For instance, nickel cadmium batteries use a nickel oxide cathode and a cadmium anode. Hence the name.

This is a chemical process called oxidation that involves an electrolyte layer sandwiched between the electrodes.

In the case of the nickel cadmium batteries, they use potassium hydroxide as the electrolyte.

But this is a one-shot deal. The chemical reaction releases the electrons, but there’s no way to re-introduce electrons into the equation.

So they’re not rechargeable. And for a world increasingly reliant on portable devices, that’s just not good enough.

Enter Lithium-Ion batteries, which were developed in the 1970’s by John B. Goodenough. That’s his real name. That’s not a joke.

Lithium ion batteries have a cathode made of lithium, duh, and an anode made of carbon, again with an electrolyte between the layers to facilitate the reaction.

The difference is lithium will absorb more electrons, so it can be recharged. But it is still a chemical reaction, so it can only reintroduce those electrons at a certain charge rate.

Super capacitors work differently. Instead of using a chemical reaction to make electrons flow, also called and electrochemical process, they use static electricity, or an electrostatic process.

Now, capacitors have been in our computers for decades, and they work by holding opposite charges between two metallic plates separated by a dielectric material.

Super capacitors, as you may have already figured out, are larger versions of capacitors that use a double layer to hold more energy. In fact they’re sometimes called double-layer capacitors.

And the cool thing about them is that since the electricity is static and not chemical, there’s far less resistance to the charge. In fact, it’s almost instantaneous.

The problem is, they don’t hold that much energy. You need a vast amount of surface area to hold enough energy to make them really useful.

So Lithium Ion batteries are very energy dense, meaning they hold a lot more stored energy, but super capacitors are very power dense, meaning the transfer the energy much faster.

If, theoretically, you could create super capacitors that could hold as much as a lithium ion battery, you’d have cell phones that could recharge in seconds and it would be good for the rest of the day.

And dare we dream it? An EV car that fully charges faster than it takes to pump gas.

There is one material that could make this dream a reality. It’s called graphene.

Graphene is basically a one-atom thick lattice of carbon atoms that has some ridiculous properties. It’s 200 times stronger than steel, but incredibly light, biodegradable, biocompatible, meaning it can be used in the human body.

They say it can be used to desalinate sea water, make space elevators, and form the basis for supercomputers, but for our purposes, it also happens to be one of the most electrically capacitive substances known to man.

It has the same energy density as lithium ion batteries with the power density of super capacitors. And since it’s only one atom thick, you can pack a ton of surface area into a small space.

With any luck, in the next 10-15 years, we’ll have super capacitor batteries that can handle energy densities at industrial scales giving us quick, plentiful electricity whenever we need it.

Graphene Supercapacitors Are About To Change The World – Here’s How

So before I can explain how super capacitors will fix this, let’s back up and explain how batteries work in the first place.

To make it simple, batteries work by moving electrons from a negatively charged material called an anode to a positively charged material called the cathode, and the device siphons off those electrons to power the device.

For instance, nickel cadmium batteries use a nickel oxide cathode and a cadmium anode. Hence the name.

This is a chemical process called oxidation that involves an electrolyte layer sandwiched between the electrodes.

In the case of the nickel cadmium batteries, they use potassium hydroxide as the electrolyte.

But this is a one-shot deal. The chemical reaction releases the electrons, but there’s no way to re-introduce electrons into the equation.

So they’re not rechargeable. And for a world increasingly reliant on portable devices, that’s just not good enough.

Enter Lithium-Ion batteries, which were developed in the 1970’s by John B. Goodenough. That’s his real name. That’s not a joke.

Lithium ion batteries have a cathode made of lithium, duh, and an anode made of carbon, again with an electrolyte between the layers to facilitate the reaction.

The difference is lithium will absorb more electrons, so it can be recharged. But it is still a chemical reaction, so it can only reintroduce those electrons at a certain charge rate.

Super capacitors work differently. Instead of using a chemical reaction to make electrons flow, also called and electrochemical process, they use static electricity, or an electrostatic process.

Now, capacitors have been in our computers for decades, and they work by holding opposite charges between two metallic plates separated by a dielectric material.

Super capacitors, as you may have already figured out, are larger versions of capacitors that use a double layer to hold more energy. In fact they’re sometimes called double-layer capacitors.

And the cool thing about them is that since the electricity is static and not chemical, there’s far less resistance to the charge. In fact, it’s almost instantaneous.

The problem is, they don’t hold that much energy. You need a vast amount of surface area to hold enough energy to make them really useful.

So Lithium Ion batteries are very energy dense, meaning they hold a lot more stored energy, but super capacitors are very power dense, meaning the transfer the energy much faster.

If, theoretically, you could create super capacitors that could hold as much as a lithium ion battery, you’d have cell phones that could recharge in seconds and it would be good for the rest of the day.

And dare we dream it? An EV car that fully charges faster than it takes to pump gas.

There is one material that could make this dream a reality. It’s called graphene.

Graphene is basically a one-atom thick lattice of carbon atoms that has some ridiculous properties. It’s 200 times stronger than steel, but incredibly light, biodegradable, biocompatible, meaning it can be used in the human body.

They say it can be used to desalinate sea water, make space elevators, and form the basis for supercomputers, but for our purposes, it also happens to be one of the most electrically capacitive substances known to man.

It has the same energy density as lithium ion batteries with the power density of super capacitors. And since it’s only one atom thick, you can pack a ton of surface area into a small space.

With any luck, in the next 10-15 years, we’ll have super capacitor batteries that can handle energy densities at industrial scales giving us quick, plentiful electricity whenever we need it.

Flying The World’s Most Affordable Single-Engine Private Jet

Cirrus Aircraft

Cirrus Aircraft, based in Duluth, Minn., is marketing the new Vision SF50 as the most affordable personal jet on the market.

The Vision Jet is the kind of plane that could have a big impact on the aviation market. Bringing a jet much closer to the affordability range of many pilots who now opt for turboprop or piston planes.




With seating for five adults and two kids, the Vision Jet is on the small side as far as private jets go, but  still has impressive capability. It has a top speed of 345 miles per hour.

Maximum range is 1,380 miles, putting city pairs like Denver to Atlanta within nonstop reach.

Please like, share and tweet this article.

Pass it on: Popular Science