Tag: TESS

SpaceX Blasts Off NASA’s New Spacecraft On Quest To Find New Planets

NASA’s TESS spacecraft embarked Wednesday on a quest to find new worlds around neighboring stars that could support life.

TESS rode a SpaceX Falcon rocket through the evening sky, aiming for an orbit stretching all the way to the moon.

The satellite — the Transiting Exoplanet Survey Satellite, or Tess — will scan almost the entire sky for at least two years, starting at the closest, brightest stars in an effort to find and identify any planets around them.

Hundreds of thousands of stars will be scrutinized, with the expectation that thousands of exoplanets — planets outside our own solar system — will be revealed right in our cosmic backyard.

Rocky and icy planets, hot gas giants and, possibly, water worlds. Super-Earths between the sizes of Earth and Neptune. Maybe even an Earth twin.

Discoveries by Tess and other missions, he noted, will bring us closer to answering questions that have lingered for thousands of years.




Does life exist beyond Earth? If so, is it microbial or more advanced? But Tess won’t look for life.

It’s not designed for that. Rather, it will scout for planets of all sorts, but especially those in the so-called Goldilocks or habitable zone of a star: an orbit where temperatures are neither too cold nor too hot, but just right for life-nourishing water.

The most promising candidates will be studied by bigger, more powerful observatories of the future, including NASA’s James Webb Space Telescope, due to launch in another few years as the heir to Hubble.

These telescopes will scour the planets’ atmospheres for any of the ingredients of life: water vapor, oxygen, methane, carbon dioxide.

TESS is the successor to NASA’s Kepler Space Telescope, on its last legs after discovering a few thousand exoplanets over the past nine years.

Astronomers anticipate more than doubling Kepler’s confirmed planetary count of more than 2,600, once Tess’ four wide-view cameras begin scientific observations in early summer.

Unlike Tess, Kepler could only scour a sliver of the sky.

The total exoplanet census currently stands at more than 3,700 confirmed, with another 4,500 on the not-yet-verified list. That’s a lot considering the first one popped up barely two decades ago.

Until about 25 years ago, the only known planets were in our own solar system, noted NASA’s director of astrophysics, Paul Hertz.

While Kepler has focused on stars thousands of light-years away, Tess will concentrate on our stellar neighbors, dozens or hundreds of light-years away.

Most of TESS’ targets will be cool, common red dwarf stars, thought to be rich breeding grounds for planets.

To find the planets, Tess will use the same transit method employed by Kepler, watching for regular, fleeting dips in stellar brightness that would indicate a planet passing in front of its star. That’s the best astronomers can do for now.

Please like, share and tweet this article.

Pass it on: Popular Science

NASA’s Planet-Hunting TESS Telescope Launches Today Aboard A SpaceX Rocket

Some of the most exciting space news of the past few years has been about Earth-like exoplanets that could one day (or perhaps already do) support life. TESS, a space telescope set to launch today aboard a SpaceX Falcon 9 rocket.

It will scan the sky for exoplanets faster and better than any existing platforms, expanding our knowledge of the universe and perhaps finding a friendly neighborhood to move to.

The Transit Exoplanet Survey Satellite has been in the works for years and in a way could be considered a sort of direct successor to the Kepler, the incredibly fruitful mission that has located thousands of exoplanets over nearly a decade.

But if Kepler was a telephoto aimed at dim targets far in the distance, TESS is an ultra-wide-angle lens that will watch nearly the entire visible sky.

They both work on the same principle, which is really quite simple: when a planet (or anything else) passes between us and a star (a “transit”), the brightness of that star temporarily dims.

By tracking how much dimmer and for how long over multiple transits, scientists can determine the size, speed, and other characteristics of the body that passed by.




It may seem like looking for a needle in a haystack, watching the sky hoping a planet will pass by at just the right moment.

But when you think about the sheer number of stars in the sky — and by the way, planets outnumber them — it’s not so crazy.

As evidence of this fact, in 2016 Kepler confirmed the presence of 1,284 new planets just in the tiny patch of sky it was looking at.

TESS will watch for the same thing with a much, much broader perspective.

Its camera array has four 16.4-megapixel imaging units, each covering a square of sky 24 degrees across, making for a tall “segment” of the sky like a long Tetris block.

The satellite will spend full 13.7-day orbits observing a segment, then move on to the next one.

There are 13 such segments in the sky’s Northern hemisphere and 13 in the southern; by the time TESS has focused on them all, it will have checked 85 percent of the visible sky.

It will be focusing on the brightest stars in our neighborhood: less than 300 light-years away and 30 to 100 times as bright as the ones Kepler was looking at.

The more light, the more data, and often the less noise — researchers will be able to tell more about stars that are observed, and if necessary dedicate other ground or space resources towards observing them.

Of course, with such close and continuous scrutiny of hundreds of thousands of stars, other interesting behaviors may be observed and passed on to the right mission or observatory.

Stars flaring or going supernova, bursts of interesting radiation, and other events could very well occur.

In fact, an overlapping area of observation above each of Earth’s poles will be seen for a whole year straight, increasing the likelihood of catching some rare phenomenon.

SpaceX is the launch partner, and the Falcon 9 rocket on which it will ride into orbit has already been test fired. TESS is packaged up and ready to go, as you see at right.

Currently the launch is planned for a 30-second window at 6:32 Florida time; if for some reason they miss that window, they’ll have to wait until the moon comes round again — a March 20 launch was already canceled.

Please like, share and tweet this article.

Pass it on: Popular Science

NASA’s Exoplanet-Hunter TESS Gets Prepped For Launch

Final preparations are underway here at Kennedy Space Center to get NASA’s next planet-hunting spacecraft, the Transiting Exoplanet Survey Satellite (TESS), ready for its planned April 16 launch.

The satellite, built by Orbital ATK, arrived here on Feb, 12 after a 17-hour drive down from Orbital’s facility in Dulles, Virginia, and was ushered inside the Payload Hazardous Servicing Facility (PHSF) to be readied for launch.

However, before it hitches a ride to space atop SpaceX’s Falcon 9 rocket, NASA invited members of the media to get a close-up look at TESS inside a specialized clean room.

The PHSF is one of the last stops a spacecraft makes before launch. Inside this unique facility, engineers conduct final tests and load hazardous fuels, such as hydrazine that will help propel the spacecraft.

Therefore, anyone who enters must follow a strict protocol, including wearing a special suit known as a bunny suit.




Before entering the clean room, a group of eager journalists were regaled with mission specifics by the TESS team, which included the mission’s principal investigator, George Ricker of MIT’s Kavli Institute for Astrophysics and Space Research.

The TESS mission, which is managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and operated by the Massachusetts Institute of Technology (MIT), will spend at least two years studying more than 200,000 of the closest and brightest stars in our solar neighborhood.

TESS will scan the sky, looking for tiny dips in starlight. These dips in brightness — known as transits — could indicate that one or more planets is orbiting the star.

Ricker said that the team expects to discover several thousand planets during the spacecraft’s mission.

The Kepler Space Telescope, NASA’s planet-hunting powerhouse, has identified more than 2,000 confirmed exoplanets using the same “transit” technique as TESS.

However, TESS has a much larger field of view — nearly 20 times larger than Kepler — potentially allowing it to surpass Kepler in the number of exoplanet discoveries.

Thanks to Kepler, we now know that planets around other stars are very common. Kepler spent its primary mission staring at a narrow patch of sky to answer that very question.

Unfortunately, all of Kepler’s discoveries are too far away for follow-up study.

Scheduled to launch next year, Webb will scan the targets identified by TESS to look for water vapor, methane and other atmospheric gases. And, with a little luck, Webb might even spot signatures indicative of life beyond Earth.

TESS will launch into a high, elliptical orbit around Earth that is in a 2:1 resonance with the moon — it will orbit twice for every one time the moon goes all the way around.

This type of orbit has multiple benefits: it is very stable, meaning it won’t be affected by space debris, radiation, while allowing the spacecraft to easily communicate with the ground.

However, this type of orbit limits the number of launch opportunities, as it must be synchronized with the moon’s orbit around the Earth. After launch, it will take the spacecraft two months to reach its destination.

During our visit, engineers were prepping the spacecraft for final testing before launch. That testing included final checkouts of the solar arrays and is expected to be completed February 21.

Next, TESS will be mated to the launch vehicle.

Originally slated to launch on March 20, TESS is currently scheduled to lift off on April 16, following a one-month delay requested by the launch provider, SpaceX. However, TESS must launch by June per congressional mandate.

Please like, share and tweet this article.

Pass it on: New Scientist