Tag: Planets

Astronomers Have Found A New Crop Of Moons Around Jupiter, And One Of Them Is A Weirdo

Ten more moons have been confirmed to orbit around Jupiter, bringing the planet’s total known satellite count to 79.

That’s the highest number of moons of any planet in the Solar System. And these newly discovered space rocks are giving astronomers insight as to why the Jupiter system looks like it does today.

Astronomers at Carnegie Institution for Science first found these moons in March 2017, along with two others that were already confirmed in June of last year.

The team initially found all 12 moons using the Blanco 4-meter telescope in Chile, though finding these objects wasn’t their main goal.

Instead, they were searching for incredibly distant small objects — or even planets — that might be lurking in our Solar System beyond Pluto.

But as they searched for these fringe space rocks, they decided to take a peek at what might be lurking around Jupiter at the same time.




Now, the moons they found have been observed multiple times, and their exact orbits have been submitted for approval from the International Astronomical Union, which officially recognizes celestial bodies.

These moons are all pretty tiny, ranging between less than a mile and nearly two miles wide. And they break down into three different types. Two orbit closer to Jupiter, moving in the same direction that the planet spins.

Farther out from those, about 15.5 million miles from the planet, there are nine that revolve in the opposite direction, moving against Jupiter’s rotation.

But in this same distant region, one strange moon that astronomers are calling Valetudo is moving with Jupiter’s spin, like the two inner moons.

That means it’s going in the opposite direction of all the other moons in the same area. “It’s basically driving down the highway in the wrong direction,” Scott Sheppard, an astronomer at Carnegie who led the discovery team said.

That’s a very unstable situation. Head-on collisions are likely to happen in that situation.

Valetudo isn’t the only moon of Jupiter that acts this way. Another moon called Carpo also orbits far out from Jupiter, moving in the opposite direction of many other moons in the area.

The small dot between the yellow lines in these photographs is the newly discovered moon Valetudo.

However, Valetudo orbits much farther away than Carpo, and it may actually be the smallest moon Jupiter has.

Now with this discovery, astronomers think it’s good evidence that moon-on-moon collisions have happened in Jupiter’s past, and these are responsible for the lunar landscape around the planet today.

Valetudo, at just 1 kilometer across, is probably the last remnant of a much larger moon that’s been ground down into dust over time,” says Sheppard.

Finding moons around Jupiter can be tough. As the biggest planet in our Solar System, it has a very large area of influence, so there’s a lot of space where moons could potentially be.

It’s difficult to search that area in a timely manner with a telescope. “It’s like looking through a straw, and you’re just covering as many points around Jupiter as you can looking for these things,” says Sheppard.

And since Jupiter is so large, it reflects a whole lot of light. That means there can be a lot of glare when searching for super faint moons around the planet.

Please like, share and tweet this article.

Pass it on: Popular Science

Puzzling Cosmic Glow Is Caused by Diamond Dust Glamming Up Stars

Diamond dust is responsible for a mysterious glow emanating from certain regions of the Milky Way galaxy, a new study reports.

Astronomers have long known that some type of very small, rapidly spinning particle is throwing off this faint light, which is known as anomalous microwave emission (AME). But they couldn’t identify the exact culprit — until now.

In the new study, researchers used the Green Bank Telescope in West Virginia and the Australia Telescope Compact Array to search for AME light in 14 newborn star systems across the Milky Way.

They spotted the emissions in three of these systems, coming from the planet-forming disks of dust and gas swirling around the stars.

This is the first clear detection of anomalous microwave emission coming from protoplanetary disks,” study co-author David Frayer, an astronomer with the Green Bank Observatory, said in a statement.




The study team also detected the unique infrared-light signatures of nanodiamonds — carbon crystals far smaller than a grain of sand — in these same three systems, and nowhere else.

In fact, these [signatures] are so rare, no other young stars have the confirmed infrared imprint,” study lead author Jane Greaves, an astronomer at Cardiff University in Wales, said in the same statement.

The researchers don’t think this is a coincidence.

One to 2 percent of the total carbon in these protoplanetary disks has been incorporated into nanodiamonds, according to the team’s estimates.

Another leading AME-source candidate, a family of organic molecules known as polycyclic aromatic hydrocarbons (PAHs), doesn’t hold up under scrutiny, the researchers said.

The infrared signature of PAHs has been identified in multiple young star systems that lack an AME glow, they noted.

The new results could help astronomers better understand the universe’s early days, study team members said.

Scientists think the universe expanded far faster than the speed of light shortly after the Big Bang, in a brief period of “cosmic inflation.

If this did indeed happen, it should have left a potentially detectable imprint — an odd polarization of the cosmic microwave background, the ancient light left over from the Big Bang.

The new study provides “good news for those who study polarization of the cosmic microwave background, since the signal from spinning nanodiamonds would be weakly polarized at best,” said co-author Brian Mason, an astronomer at the National Radio Astronomy Observatory in Charlottesville, Virgina.

This means that astronomers can now make better models of the foreground microwave light from our galaxy, which must be removed to study the distant afterglow of the Big Bang,” Mason added.

Please like, share and tweet this article.

Pass it on: Popular Science

 

‘Diamonds From The Sky’ Approach Turns CO2 Into Valuable Products

Finding a technology to shift carbon dioxide (CO2), the most abundant anthropogenic greenhouse gas, from a climate change problem to a valuable commodity has long been a dream of many scientists and government officials.

Now, a team of chemists says they have developed a technology to economically convert atmospheric COdirectly into highly valued carbon nanofibers for industrial and consumer products.

The team will present brand-new research on this new CO2 capture and utilization technology at the 250th National Meeting & Exposition of the American Chemical Society (ACS). ACS is the world’s largest scientific society.

The national meeting, which takes place here through Thursday, features more than 9,000 presentations on a wide range of science topics.




We have found a way to use atmospheric CO2 to produce high-yield carbon nanofibers,” says Stuart Licht, Ph.D., who leads a research team at George Washington University.

“Such nanofibers are used to make strong carbon composites, such as those used in the Boeing Dreamliner, as well as in high-end sports equipment, wind turbine blades and a host of other products.”

Previously, the researchers had made fertilizer and cement without emitting CO2, which they reported.

Now, the team, which includes postdoctoral fellow Jiawen Ren, Ph.D., and graduate student Jessica Stuart, says their research could shift CO2from a global-warming problem to a feed stock for the manufacture of in-demand carbon nanofibers.

Licht calls his approach “diamonds from the sky.”

That refers to carbon being the material that diamonds are made of, and also hints at the high value of the products, such as the carbon nanofibers that can be made from atmospheric carbon and oxygen.

Because of its efficiency, this low-energy process can be run using only a few volts of electricity, sunlight and a whole lot of carbon dioxide.

At its root, the system uses electrolytic syntheses to make the nanofibers.

Please like, share and tweet this article.

Pass it on: Popular Science

New Telescope In Chile Unveils Stunning First Images

The first released VST image shows the spectacular star-forming region Messier 17, also known as the Omega Nebula or the Swan Nebula, as it has never been seen before. This vast region of gas, dust and hot young stars lies in the heart of the Milky Way in the constellation of Sagittarius (The Archer)

A new state-of-the-art telescope has snapped its first impressive images of the southern sky over the Paranal Observatory in Chile.

The VLT Survey Telescope (VST) is the latest addition to the European Southern Observatory’s network of telescopes at Paranal in the Atacama Desert of northern Chile.

The first image released from the VST shows the spectacular star-forming region Messier 17, also known as the Omega nebula or the Swan nebula, as it has never been seen before.

This nebula, full of gas, dust and hot young stars, lies in the heart of our Milky Way galaxy, in the constellation of Sagittarius.

The VST’s field of view is so large that is able to observe the entire nebula, including its fainter outer parts.

The second of the newly released images is a portrait of the star cluster Omega Centauri in unprecedented detail. Omega Centauri is the largest globular cluster in the sky and the VST’s view includes about 300,000 stars.

ESO’s new telescope

The VST is a 2.6-meter telescope with a 268-megapixel camera, called OmegaCAM, at its core. The visible-light telescope is designed to map the sky both quickly and with precise image quality.

The VST is a wide-field survey telescope with a field of view twice as broad as the full moon. It is the largest telescope in the world designed to exclusively survey the sky in visible light.

ESO officials oversee many telescopes based at three observing sites in Chile’s high Atacama Desert. In addition to the telescopes atop the summit of Cerro Paranal, the observatory has sites at La Silla and Chajnantor.




Mapping the cosmos

Over the next five years, the VST and its OmegaCAM will make three detailed surveys of the southern sky, and the data will be made public for astronomers around the world to analyze.

The KIDS survey will image several regions of the sky away from the Milky Way. The study aims to further astronomers’ understanding of dark matter, dark energy and galaxy evolution, and find many new galaxy clusters.

The VST ATLAS survey will cover a larger area of sky and focus on understanding dark energy and supporting more detailed studies using the VLT and other telescopes.

The third survey, VPHAS+, will image the central plane of the Milky Way to map the structure of the galactic disc and its star formation history.

VPHAS+ will yield a catalogue of around 500 million objects and is expected to discover many new examples of unusual stars at all stages of their evolution.

The VST project is a joint venture between ESO and the National Institute for Astrophysics (INAF) in Naples, Italy.

TRAPPIST-1 Planets Probably Rich In Water

Planets around the faint red star TRAPPIST-1, just 40 light-years from Earth, were first detected by the TRAPPIST-South telescope at ESO’s La Silla Observatory in 2016.

In the following year further observations from ground-based telescopes, including ESO’s Very Large Telescope and NASA’s Spitzer Space Telescope, revealed that there were no fewer than seven planets in the system, each roughly the same size as the Earth.

They are named TRAPPIST-1b,c,d,e,f,g and h, with increasing distance from the central star.

Further observations have now been made, both from telescopes on the ground, including the nearly-complete SPECULOOS facility at ESO’s Paranal Observatory, and from NASA’s Spitzer Space Telescope and the Kepler Space Telescope.

A team of scientists led by Simon Grimm at the University of Bern in Switzerland have now applied very complex computer modelling methods to all the available data and have determined the planets’ densities with much better precision than was possible before.




Simon Grimm explains how the masses are found: “The TRAPPIST-1 planets are so close together that they interfere with each other gravitationally, so the times when they pass in front of the star shift slightly.

“These shifts depend on the planets’ masses, their distances and other orbital parameters. With a computer model, we simulate the planets’ orbits until the calculated transits agree with the observed values, and hence derive the planetary masses.”

Team member Eric Agol comments on the significance: “A goal of exoplanet studies for some time has been to probe the composition of planets that are Earth-like in size and temperature.

“The discovery of TRAPPIST-1 and the capabilities of ESO’s facilities in Chile and the NASA Spitzer Space Telescope in orbit have made this possible — giving us our first glimpse of what Earth-sized exoplanets are made of!

The measurements of the densities, when combined with models of the planets’ compositions, strongly suggest that the seven TRAPPIST-1 planets are not barren rocky worlds.

They seem to contain significant amounts of volatile material, probably water, amounting to up to 5% the planet’s mass in some cases — a huge amount; by comparison the Earth has only about 0.02% water by mass!

TRAPPIST-1b and c, the innermost planets, are likely to have rocky cores and be surrounded by atmospheres much thicker than Earth’s.

TRAPPIST-1d, meanwhile, is the lightest of the planets at about 30 percent the mass of Earth. Scientists are uncertain whether it has a large atmosphere, an ocean or an ice layer.

Scientists were surprised that TRAPPIST-1e is the only planet in the system slightly denser than Earth, suggesting that it may have a denser iron core and that it does not necessarily have a thick atmosphere, ocean or ice layer.

It is mysterious that TRAPPIST-1e appears to be so much rockier in its composition than the rest of the planets.

In terms of size, density and the amount of radiation it receives from its star, this is the planet that is most similar to Earth.

TRAPPIST-1f, g and h are far enough from the host star that water could be frozen into ice across their surfaces.

If they have thin atmospheres, they would be unlikely to contain the heavy molecules that we find on Earth, such as carbon dioxide.

Astronomers are also working hard to search for further planets around faint red stars like TRAPPIST-1. As team member Michaël Gillon explains: “This result highlights the huge interest of exploring nearby ultracool dwarf stars — like TRAPPIST-1 — for transiting terrestrial planets.

“This is exactly the goal of SPECULOOS, our new exoplanet search that is about to start operations at ESO’s Paranal Observatory in Chile.

Please like, share and tweet this article.

Pass it on: Popular Science

Pictures Show A Mysterious Planet Get More Surreal Over Time

Since entering orbit on July 4 2016, NASA’s Juno spacecraft has been revealing a world coated in curling clouds that loop and spiral around one another, creating filigreed bands speckled with roiling oval storms.

Some of these storms dapple the planet’s previously unseen poles, and they all join the best known of the Jovian tempests, a splotch called the Great Red Spot that stretches more than an Earth across.

The new images “look like Van Gogh paintings,” says Juno’s principal investigator Scott Bolton of the Southwest Research Institute.




I kind of expected some of this, because a long time ago, Voyager took pictures, and other spacecraft that have gone near Jupiter have taken some images, but they’re usually global ones and boy, when you get close, and you see these swirls, they look like art.

These stunning clouds are produced by Jupiter’s incredibly complex atmospheric dynamics—things like winds and turbulence—combined with certain chemistries that produce their vibrant colours.

But the precise reason why Jupiter alone is so fantastically painted isn’t clear.

You don’t see that on Saturn, Uranus, or Neptune for some reason,” Bolton says. “Maybe what you’re seeing is the fact that Jupiter is so big that it has triggered some other special dynamics that are star-like, to some extent.”

Streams of clouds spin off a rotating, oval-shaped cloud system in the Jovian southern hemisphere. Citizen scientist Roman Tkachenko reconstructed the colour and cropped the image, which was taken on February 2 from just 9,000 miles above the storm.

Juno is doing more than simply ogling this magnificent planetscape.

Designed to tease out the intricacies of Jupiter’s innards, the spacecraft carries eight instruments that monitor the planet’s gravity, auroras, atmosphere, magnetosphere, cloud depths, and electric fields.

Together, they should help scientists learn more about the planet’s origins and what, exactly, lies beneath those clouds—straight down to the planet’s heart, which could be made from heavy elements or rock wrapped in a fluid form of metallic hydrogen.

So far, though, seeing the planet’s poles for the first time has been one of the highlights of the mission.

This close-up view of Jupiter, taken from a mere 5,400 miles away, captures the turbulent region just west of the Great Red Spot. Citizen scientist Sergey Dushkin processed and cropped the image to draw viewers’ eyes to the dynamic clouds.

These regions are strikingly different from equatorial Jupiter, with a blue tinge, numerous cyclones, and a lack of distinct cloudy bands.

On March 27, Juno swung low over Jupiter during its fourth science orbit, coming within 2,700 miles of those magnificent cloud tops. Images from that orbit will be released soon.

And over its next set of orbits, Juno will continue focusing on Jupiter’s deep atmosphere and interior structure, gathering data that scientists will eventually combine into a global view of this mysterious world.

Until then, we can bask in the beauty of the biggest planet in the solar system.

Please like, share and tweet this article.

Pass it on: Popular Science

Venus May Once Have Been Habitable, According To NASA

Venus – a hellish planet with an atmosphere of carbon dioxide, almost no water and temperatures of more than 460 degrees Celsius – may once have been habitable, according to Nasa scientists.

Researchers used climate models to calculate that Venus might have had a shallow ocean of liquid water and temperatures that could have allowed life to exist for up to two billion years of its early history.

The atmosphere is 90 times as thick as the air on Earth and scientists had thought this was largely caused by the difference between the two planets’ rate of spin.

A day on Venus lasts 117 Earth days because it spins on its axis at a much slower rate. But recent research showed that Venus could have had an atmosphere similar to the Earth’s today.




The first signs that Venus once had an ocean were discovered by NASA’s Pioneer mission in the 1980s.

Venus is closer to the sun than Earth and receives far more sunlight.

This caused the ocean to evaporate, water-vapour molecules were broken apart into hydrogen and oxygen by ultraviolet radiation and the hydrogen escaped to space.

With no water left on the surface, carbon dioxide built up in the atmosphere and led to a runaway greenhouse gas effect that created present searing heat.

A map of Venus’s surface based on imagery collected by Magellan, Pioneer Venus, and Venera 13 and 14 .

Michael Way, a researcher at Nasa’s Goddard Institute for Space Studies (GISS) in New York, said: “Many of the same tools we use to model climate change on Earth can be adapted to study climates on other planets, both past and present.

Colleague Anthony Del Genio added: “In the GISS model’s simulation, Venus’ slow spin exposes its dayside to the sun for almost two months at a time.

In a statement, Nasa said it was thought that Venus may have had more land than Earth. One of the factors they had to take into consideration was the ancient sun was up to 30 per cent dimmer.

Please like, share and tweet this article.

Pass it on: Popular Science

A Time Lapse Sequence At Jupiter’s South Pole

 

This series of images captures cloud patterns near Jupiter’s south pole, looking up towards the planet’s equator.

NASA’s Juno spacecraft took the color-enhanced time-lapse sequence of images during its eleventh close flyby of the gas giant planet on Feb. 7 between 7:21 a.m. and 8:01 a.m. PST (10:21 a.m. and 11:01 a.m. EST).

At the time, the spacecraft was between 85,292 to 124,856 miles (137,264 to 200,937 kilometers) from the tops of the clouds of the planet with the images centered on latitudes from 84.1 to 75.5 degrees south.




At first glance, the series might appear to be the same image repeated. But closer inspection reveals slight changes, which are most easily noticed by comparing the far left image with the far right image.

Directly, the images show Jupiter.

But, through slight variations in the images, they indirectly capture the motion of the Juno spacecraft itself, once again swinging around a giant planet hundreds of millions of miles from Earth.

Citizen scientist Gerald Eichstädt processed this image using data from the JunoCam imager.

Please like, share and tweet this article.

Pass it on: Popular Science

The Mars 2020 Rover (collab with Fraser Cain)

Set up a free Brilliant account at http://www.brilliant.org/answerswithjoe/ And the first 295 to sign up for a premium account get 20% off every month!

The Mars Curiosity Rover is one of the most successful planetary missions of all time. Here’s how NASA plans to follow that up – the Mars 2020 Rover

 

Science Objective A: Explore once potentially-habitable areas

Science Objective B: Seek bio signatures

Science Objective C: Sample Caching

Science Objective D: Demonstrate in-situ resource utilization.

And here are the instruments that will make that possible. It contains 2 cameras on the probe’s mast, one called Mastcam-Z, which is the main “eye” for the rover.

It can take 360 degree panoramic 3D views with an advanced zoom that can see something the size of a housefly from the distance of a soccer field. And the second camera is called SuperCam.

This can actually do a spectrographic analysis of a rock’s chemical makeup from over 20 feet away by burning a hole in the rock as small as the point of a pencil.

This was developed in conjunction with a team from France. PIXL, or Planetary Instrument for X-Ray Lithochemistry will examine rock and soil samples for signs of ancient microbial life and can take extremely close up images of soil samples down to the size of a grain of salt. MEDA, the Mars Environmental Dynamics Analyzer is a contribution from a team in Spain, it’s a tiny weather lab that measures wind speed, temperature and humidity and also gathers data about dust particles in the Martian atmosphere.

RIMFAX, the Radar Imager for Mars Subsurface Experiment from Norway is basically like a sonogram that see tens of meters below the ground and detect elements down to the centimeter. This will help find underground water and ice on Mars. The aptly named SHERLOC, or Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals is a big sciency way of saying it looks for signs of ancient life with UV light, much like forensic investigators at crime scenes.

Hence, Sherlock. But SHERLOC will carry a couple of interesting things with it, one is a Mars meteorite for calibration purposes.

There’s a handful of meteorites found here on Earth that we know were once a part of Mars that were blasted away in an asteroid impact, then travelled through the solar system and eventually landed on Earth.

SHERLOC is going to carry a piece of one of those meteorites to use to calibrate its laser on the Martian surface, which means this will be the first time a piece of martian rock will be returned to Mars. The other thing is it will be carrying samples of materials that may be used to make Martian spacesuits, to see how well they fare in the Martian environment. And last but definitely not least is MOXIE, the Mars Oxygen ISRU Experiment.

This is the module that will be testing in situ resource utilization techniques in the hopes of turning the CO2 in the martian atmosphere into oxygen, just like a tree. The rover will also contain a special microphone, giving us the first sound recordings from the surface of Mars.

A New Study Suggests That As A Star Begins To Die And Slowly Expands Outward, It Would Temporarily Light Up As It Eats The Worlds It Hosts

600 light years away, in the constellation of Auriga, there is a star in some ways similar to our Sun. It’s a shade hotter (by about 800° C), more massive, and older.

Oddly, it appears to be laced with heavy elements: more oxygen, aluminum, and so on, than might be expected. A puzzle.

Then, last year, it was discovered that this star had a planet orbiting it. A project called WASP – Wide Area Search for Planets, a UK telescope system that searches for exoplanets — noticed that the star underwent periodic dips in its light.

This indicates that a planet circles the star, and when the planet gets between the star and us, it blocks a tiny fraction of the starlight.




The planet is a weirdo, for many reasons… but it won’t be weird for too much longer. That’s because the star is eating it.

OK, first, the planet. Called WASP 12b, it was instantly pegged as an oddball. The orbit is only 1.1 days long! Compare that to our own 365 day orbit, or even Mercury’s 88 days to circle the Sun.

This incredibly short orbital period means this planet is practically touching the surface of its star as it sweeps around at over 220 km/sec!

That also means it must be very hot; models indicate that the temperature at its cloud tops would be in excess of 2200°C.

Not only that, but other numbers were odd, too. WASP 12b was found to be a bit more massive and bigger than Jupiter; about 1.8 times its size and 1.4 times its mass.

That’s too big! Models indicate that planets this massive have a funny state of matter in them; they are so compressible that if you add mass, the planet doesn’t really get bigger, it just gets denser.

In other words, you could double Jupiter’s mass and its size wouldn’t increase appreciably, but since the mass goes up, so would its density.

But WASP 12b isn’t like that. In fact, it has a lower density than Jupiter, and is a lot bigger! Something must be going on… and when you see a lot of weird things all sitting in one place, it makes sense to assume they’re connected.

In this case it’s true: that planet is freaking hot, and that’s at the heart of this mess. Heating a planet that much would not exactly be conducive to its well-being.

When you heat a gas it expands, which would explain WASP 12b’s big size. It’s puffy! But being all bloated that close to a star turns out to be bad for your health.

Astronomers used Hubble to observe the planet in the ultraviolet and found clear signs of all sorts of heavy elements, including sodium, tin, aluminum, magnesium, and manganese, as well as, weirdly, ytterbium*.

Moreover, they could tell from the data that these elements existed in a cloud surrounding the planet, like an extended atmosphere going outward for hundreds of thousands of kilometers.

This explains the peculiar high abundance of heavy metals in the star I mentioned at the beginning of this post; they come from the planet! But not for long.

Given the mass of the planet and the density of the stream, it looks like it has roughly ten million years left. At that point, supper’s over: there won’t be anything left for the star to eat.

In reality it’s hard to say exactly what will happen; there may be a rocky/metal core to the planet that will survive. But even that is so close to the star that it will be a molten blob of goo.

The way orbits work, the way the dance of gravity plays out over time, the planet itself may actually be drawn inexorably closer to its star. Remember, too, the star is old, and will soon start to expand into a red giant.

So the planet is falling and the star is rising; eventually the two will meet and the planet will meet a fiery death.

All in all, it sucks to be WASP 12b.

But it’s cool to be an astronomer!

Please like, share and tweet this article.

Pass it on: New Scientist