Month: July, 2017

The Fermi Paradox, Cyborgs, And Artificial Intelligence – My Interview With Isaac Arthur

In this week’s live stream, I’m going to share clips of my interview with Isaac Arthur, which you can find the full version on the Answers With Joe Podcast:
http://answerswithjoe.com/fermi-para…

Support me on Patreon!
http://www.patreon.com/answerswithjoe

Follow me at all my places!
Instagram: https://instagram.com/answerswithjoe
Snapchat: https://www.snapchat.com/add/answersw…
Facebook: http://www.facebook.com/answerswithjoe
Twitter: https://www.twitter.com/answerswithjoe

The Fermi Paradox, Cyborgs, And Artificial Intelligence – My Interview With Isaac Arthur

Isaac Arthur runs the YouTube channel Science and Futurism With Isaac Arthur, where he goes into incredibly deep dives on subjects like megastructures, future space colonies, aliens, and little things like farming black holes (like you do). Here we touch on a few of those topics and do a little shop talk about life as YouTubers.

If you enjoy this episode, check out Isaac’s channel at www.isaacarthur.net

The Top 5 Places We Could Colonize In Our Solar System

The 5 best options for colonizing in our solar system are:

  • The moon
  • Mars
  • Europa
  • Titan
  • Venus

 

The moon

Gravity: 1/6 that of earth

Air pressure: none

Temperature: extreme (253 in sun, -253 in shade)

Why go – a place to launch to other places Orbiting at 2288 mph (3683 kph) – significant boost

Advantages: Instant communication with Earth Good place to learn how to colonize where Experts are available 24/7

Advantages: Lighter gravity means we could build bigger there
Advantages: could dome over craters to create housing
Advantages: water ice in some pole craters

One place we have talked a lot about is Mars

 

Mars

Gravity: Just over 1/3 (38%)

Air Pressure: .6% if Earth’s

Temperature: 70 in day (20C), -100 at night (-73C)

Why go: Most comfortable temperature-wise and gravity-wise, but pressure is still abysmal

Down-side: Thin atmosphere means not enough to support life but enough to make landings difficult.

Terraforming option – most potential for terraforming. Melting ice caps could pump CO2 into the air and thicken the atmosphere as well as warm the planet

 

Europa

Gravity: 13% of Earth’s

Air pressure: barely exists – mostly oxygen

Temperature: -260F -160C

This seems like a swing and a miss, but there’s something interesting under the surface of Europa

Tidal heating causes a sea of liquid water beneath the surface.
One of the best options for finding life in the solar system
Underwater habitats might be the answer.

Downside: radiation carried by Jupiter’s magnetic field would pose an issue

 

Titan

Gravity: 13% of Earth’s

Air pressure: 1.5x that of Earth

Temperature: -290F, -179C

Of all the places in the solar system, Titan’s air pressure is most like Earth’s You could just walk around on the surface without a suit, except for the fact that it’s so cold methane flows in rivers.

Could use the methane for fuel

But I promised something controversial, and here it is, my personal favorite option for colonizing another planet… Venus.

 

Venus

Gravity: 91% of Earth’s

Air Pressure: 100x that of Earth

Temperature: 872F, 467C

Now I know what you’re saying, you’re saying Joe, that only meets one of the three criteria, how can you possibly pick that as your number one?

Because those numbers are for the planet’s surface. Up in the clouds, it’s a different story.

Venus’ air pressure is insane. On the surface, it would crush you like a soda can. But about 50 kilometers up in the atmosphere, it’s about the same as here.

Which means that just like a ship can float on top of the water, we could build colonies that float on the upper atmosphere of Venus.

It would still be hot, but manageable.

And I know people will always say, but what if you fall? Or if you drop something, you’ll never get it back.

Well, I go back to the ship on the sea analogy. If you fall off the boat, you’re likely to drown. If you drop your phone over the side, you’ll never see it again. But we still have cruise ships carrying thousands of people and entire navies floating around out there.

Plus the communication time would be smaller than anywhere else.

Elon Musk’s Tesla Master Plan Is About To Become Reality

This Friday is a day that over 400,000 people have been waiting for since March of 2016. Tesla is officially handing out the first production line Model 3s to reservation holders.

(over footage)
They first introduced the Model 3 16 months ago to huge fanfare, more than $130,000 people put a thousand dollars down before the car was even revealed.

And, full disclosure, I’m one of them. (hold up card) Now, I didn’t put money down before I saw it, I was adamant about that, I had to see it first. But when I saw it, I was like, “eh, why not?”

I can always get the deposit back if I change my mind.

Now I know it’ll be a while before I get mine and that’s fine, my Jetta diesel isn’t going anywhere.

And before you call me a Tesla fanboy in the comments, I cop to it, I’m a fan. And I’m going to assume most of you watching this are fans because… why else would you watch this video, unless you get off on hating things, which… I dunno, that sounds miserable way to live your life to me, but… Kay.

So this is kind-of a big deal, so I wanted to talk about what this launch event means, both to Tesla and the car industry, and throw in my own thoughts and concerns along the way.

Hold on tight because this video’s going into Ludicrous mode.

The Fermi Paradox, Cyborgs, And Artificial Intelligence – My Interview With Isaac Arthur

Isaac Arthur runs the YouTube channel Science and Futurism With Isaac Arthur, where he goes into incredibly deep dives on subjects like megastructures, future space colonies, aliens, and little things like farming black holes (like you do). Here we touch on a few of those topics and do a little shop talk about life as YouTubers.

If you enjoy this episode, check out Isaac’s channel at www.isaacarthur.net

Graphene Supercapacitors Are About To Change The World – Here’s How

We live our lives through portable devices, and the race is on to create better energy storage for those devices. Could graphene supercapacitors be the holy grail?

So before I can explain how super capacitors will fix this, let’s back up and explain how batteries work in the first place.

To make it simple, batteries work by moving electrons from a negatively charged material called an anode to a positively charged material called the cathode, and the device siphons off those electrons to power the device.

For instance, nickel cadmium batteries use a nickel oxide cathode and a cadmium anode. Hence the name.

This is a chemical process called oxidation that involves an electrolyte layer sandwiched between the electrodes.

In the case of the nickel cadmium batteries, they use potassium hydroxide as the electrolyte.

But this is a one-shot deal. The chemical reaction releases the electrons, but there’s no way to re-introduce electrons into the equation.

So they’re not rechargeable. And for a world increasingly reliant on portable devices, that’s just not good enough.

Enter Lithium-Ion batteries, which were developed in the 1970’s by John B. Goodenough. That’s his real name. That’s not a joke.

Lithium ion batteries have a cathode made of lithium, duh, and an anode made of carbon, again with an electrolyte between the layers to facilitate the reaction.

The difference is lithium will absorb more electrons, so it can be recharged. But it is still a chemical reaction, so it can only reintroduce those electrons at a certain charge rate.

Super capacitors work differently. Instead of using a chemical reaction to make electrons flow, also called and electrochemical process, they use static electricity, or an electrostatic process.

Now, capacitors have been in our computers for decades, and they work by holding opposite charges between two metallic plates separated by a dielectric material.

Super capacitors, as you may have already figured out, are larger versions of capacitors that use a double layer to hold more energy. In fact they’re sometimes called double-layer capacitors.

And the cool thing about them is that since the electricity is static and not chemical, there’s far less resistance to the charge. In fact, it’s almost instantaneous.

The problem is, they don’t hold that much energy. You need a vast amount of surface area to hold enough energy to make them really useful.

So Lithium Ion batteries are very energy dense, meaning they hold a lot more stored energy, but super capacitors are very power dense, meaning the transfer the energy much faster.

If, theoretically, you could create super capacitors that could hold as much as a lithium ion battery, you’d have cell phones that could recharge in seconds and it would be good for the rest of the day.

And dare we dream it? An EV car that fully charges faster than it takes to pump gas.

There is one material that could make this dream a reality. It’s called graphene.

Graphene is basically a one-atom thick lattice of carbon atoms that has some ridiculous properties. It’s 200 times stronger than steel, but incredibly light, biodegradable, biocompatible, meaning it can be used in the human body.

They say it can be used to desalinate sea water, make space elevators, and form the basis for supercomputers, but for our purposes, it also happens to be one of the most electrically capacitive substances known to man.

It has the same energy density as lithium ion batteries with the power density of super capacitors. And since it’s only one atom thick, you can pack a ton of surface area into a small space.

With any luck, in the next 10-15 years, we’ll have super capacitor batteries that can handle energy densities at industrial scales giving us quick, plentiful electricity whenever we need it.