Tag: quantum

Is This Geometric Structure The Theory Of Everything?

For 100 years, scientists have been searching for the “Theory of Everything”, the elusive link between the physics of Quantum Mechanics and General Relativity. A team of researchers believe they may have the key, and it all lies in a geometrical design.

Garrett Lisi’s work in particle physics led him to find patterns in the geometry that led him to discover an 8-dimensional crystalline structure called the E8 Lie Group. He used this to predict the existence of particles that he believes account for the force of gravity.

Klee Irwin and the Quantum Gravity Research team have taken this and constructed a theory about the nature of reality itself all the way down to the plank length, where reality breaks down into pixellated tetrahedrons that through emergence theory has created a universal consciousness.

Inside The Weird World Of Quantum Computers

In a world where we are relying increasingly on computing, to share our information and store our most precious data, the idea of living without computers might baffle most people.

But if we continue to follow the trend that has been in place since computers were introduced, by 2040 we will not have the capability to power all of the machines around the globe, according to a recent report by the Semiconductor Industry Association.




What is quantum computing?

Quantum computing takes advantage of the strange ability of subatomic particles to exist in more than one state at any time.

Due to the way the tiniest of particles behave, operations can be done much more quickly and use less energy than classical computers.

In classical computing, a bit is a single piece of information that can exist in two states – 1 or 0. Quantum computing uses quantum bits, or ‘qubits’ instead.

These are quantum systems with two states. However, unlike a usual bit, they can store much more information than just 1 or 0, because they can exist in any superposition of these values.

A qubit can be thought of like an imaginary sphere. Whereas a classical bit can be in two states – at either of the two poles of the sphere – a qubit can be any point on the sphere.

This means a computer using these bits can store a huge amount more information using less energy than a classical computer.

Last year, a team of Google and NASA scientists found a D-wave quantum computer was 100 million times faster than a conventional computer.

But moving quantum computing to an industrial scale is difficult.

Please like, share and tweet this article.

Pass it on: New Scientist

The Quantum Computer That Could Spell The End Of Encryption

The researchers from Massachusetts Institute of Technology (MIT) and Austria’s University of Innsbruck call it “the beginning of the end for encryption schemes“.

Most encryption used today uses integer factorisation, or “the factoring problem“, and its security comes from the difficulty of factoring large numbers.

For example, finding the prime factors, or multipliers, for the number 15 is fairly easy as it’s a small number.

However, a larger number such as 91, may take some pen and paper.

An even larger number, say with 232 digits, has taken scientists two years to factor, using hundreds of classical computers operating in parallel.

In encryption, two different, but intimately related numbers, are used for the encryption and decryption, making it easy to calculate but hard to reverse.




However, a quantum computer is expected to outperform traditional computers and crack this problem by using hundreds of atoms, essentially in parallel, to quickly factor huge numbers because data is encoded in the ‘spin’ of individual electrons.

Unlike standard computers, quantum bits, or qubits can exist in multiple states at once rather than the binary 1 or 0 of conventional bits.

This means they can perform multiple calculations in parallel and hold far more information than normal bits.

For example, a computer with just 1,000 qubits could easily crack modern encryption keys while smartphone games like Angry Birds typically use 40,000 conventional bits to run.

It typically takes about 12 qubits to factor the number 15, but researchers at MIT and the University of Innsbruck in Austria have found a way to pare that down to five qubits, each represented by a single atom.

This has been designed and built by a quantum computer from five atoms in an ion trap. The computer uses laser pulses to carry out algorithms on each atom, to correctly factor the number 15.

The approach thus provides the potential for designing a powerful quantum computer, but with fewer resources,” said the research paper.

We factor the number 15 by effectively employing and controlling seven qubits and four ‘cache qubits’ and by implementing generalised arithmetic operations, known as modular multipliers.

The system is designed in a way that more atoms and lasers can be added to build a bigger and faster quantum computer, able to factor much larger numbers.

The scientists said the results represent the first scalable implementation of Shor’s algorithm, a quantum algorithm named after mathematician Peter Shor in 1994 to solve the factorisation problem.

We show that Shor’s algorithm, the most complex quantum algorithm known to date, is realisable in a way where, yes, all you have to do is go in the lab, apply more technology, and you should be able to make a bigger quantum computer,” said Isaac Chuang, professor of physics and professor of electrical engineering and computer science at MIT.

It might still cost an enormous amount of money to build – you won’t be building a quantum computer and putting it on your desktop anytime soon – but now it’s much more an engineering effort, and not a basic physics question.

The researchers claimed the ion-trap quantum computer returns the correct factors with a confidence level exceeding 99 per cent.

Please like, share and tweet this article.

Pass it on: New Scientist