Tag: space

Do You Exist In Infinite Universes?

Get a 2-month free trial of Skillshare at https://skl.sh/joescott8

Experiments like the double slit experiment have spawned multiple interpretations of quantum physics, including the Copenhagen interpretation and Pilot Wave Theory. But the Many Worlds Hypothesis might be the most mind-blowing of all.

The most popular interpretation of quantum mechanics over the past hundred years was developed by Niels Bohr and Werner Heisenberg in Copenhagen, around 1925. This was fittingly named the Copenhagen Interpretation.

Louis de Broglie [de Broy] came up with the Pilot Wave Interpretation of Quantum Mechanics at about the same time, which I’ve also covered.

Both of these interpretations share the belief that the measured path of a particle is the only real path. The other paths are mere possibilities.

About 30 years later, a slightly drunk Princeton student disagreed. While sipping sherry, or so the story goes, Hugh Everett III started asking, what if all the paths do exist, but are just taken in different realities?

Everett’s ideas were… not well received to say the least. At the time, Niels Bohr was then alive and active in scientific circles. He had a reputation for shutting down any physicist who dared challenge the Copenhagen Interpretation.

And that was where the idea stayed, relegated to the dustbin of history, for the next 2 decades, before it got rediscovered by Bryce DeWitt.

He was the acting editor at Reviews of Modern Physics in 1973 when he ran across the paper and was stunned that nothing ever came of this idea.

Since the 1970s, the Many Worlds Interpretation has gone from being fringe science to an idea mainstream physicists can get behind.

Stephen Hawking was a fan, as was Richard Feynman…though to hear physicists tell it, Feynman was a fan of literally EVERYTHING.

One prominent proponent of Many Worlds working today is David Deutsch, who is a quantum computer pioneer whose cool factor went through the roof when he was mentioned in Avengers: Endgame.

The Black Hole Photo: Mystery Solved

Last week, the Event Horizon Telescope released their first images ever taken of a black hole, specifically the supermassive black hole at the center of galaxy M87. I thought this would be a good time to look back at how we’ve visualized Black Holes over the years and what we can learn from them.

Did The US Accidentally Blast A Manhole Cover Into Space?

In 1957, the United States began testing nuclear weapons underground in the desert outside of Las Vegas, Nevada as part of Operation Plumbbob. One underground test, Pascal B, may have put the first manmade object into space.

Robert R. Brownlee engineered the Pascal A underground test to measure the amount of fallout that would occur from underground nuclear explosions. It involved digging a 485 foot shaft into the ground and capping it with a heavy steel plate.

The explosion blew the steel plate off the ground and caused Brownlee to wonder how fast it propelled the object, so he set up a second nuclear test, Pascal B, to measure the speed of the steel cap.

The high-speed camera only recorded the plate in one frame, which led Brownlee to conclude that it must have been traveling at more than 125,000 miles per hour, or 5 times the escape velocity of Earth. The plate was never found, and this has led many to believe it was jettisoned out into space.

If this is true, the steel plate from Pascal B beat Sputnik to space by 2 months and would be the fastest human-made object of all time.

There are many who believe this couldn’t possibly be true though because at that speed the plate would have vaporized in the atmosphere just like a meteor or satellite re-entering the atmosphere at orbital velocity. So the mystery of Pascal B carries on.

Bigelow Aerospace Is Building The World’s First Space Hotel

Try Brilliant’s Daily Puzzles and get 20% off if you go to http://www.brilliant.org/answerswithjoe

Robert Bigelow became a billionaire as the owner of Budget Suites of America hotels. But now he wants to build hotels in space. And his company Bigelow Aerospace is getting closer with their inflatable habitats.

Robert Bigelow grew up in Las Vegas in the 1950s, and saw the nuclear testing that took place nearby. This spurred a love of science that he carries with him to this day.

He vowed to one day spend $500 million to create the first commercial space station, and established Bigelow Aerospace in 2000.

Their focus would be on inflatable habitats, a technology that NASA developed while working on the Transhab module for the International Space Station that was eventually cancelled. Bigelow Aerospace bought NASA’s patents and began working on their own versions.

The first program, GenesisI1 and Genesis II, were unmanned inflatable habitats that tested the technology. The habitats were functional for 2 and a half years and performed well enough that NASA contacted Bigelow to test an inflatable module on the ISS.

Bigelow created BEAM – the Bigelow Experimental Activity Module, which was installed on the ISS in 2016. It has performed perfectly, getting its original 2-year mission expanded beyond 2020, and has shown to stand up to micrometeorite impacts and radiation as well as the rest of the ISS.

Bigelow’s next step is to launch the B330, a 300 cubic meter inflatable habitat that is the centerpiece of their plans. Bigelow wants to use multiple B330s to create commercial space stations in orbit. B330s may even be used as habitats on the moon.

Beyond that, Bigelow plans to build the B2100, a massive habitat with 2 and a half times more volume than the ISS. These would be the first space hotels.

The Oort Cloud: The Solar System’s Disaster Factory

Support me on Patreon!


Get cool nerdy t-shirts at

Thinking of getting a Tesla? Get free stuff if you use my referral code:

Follow me at all my places!
Instagram: https://instagram.com/answerswithjoe

Snapchat: https://www.snapchat.com/add/answersw…

Facebook: http://www.facebook.com/answerswithjoe

Twitter: https://www.twitter.com/answerswithjoe

Apollo 14 Astronauts May Have Found the Oldest Earth Rock Lying On the Moon

A moon rock brought back by Apollo 14 astronauts in 1971 may contain a tiny piece of the ancient Earth (the “felsite clast” identified by the arrow).

One of Earth’s oldest rocks may have been dug up on the moon.

A chunk of material brought back from the lunar surface by Apollo astronauts in 1971 harbors a tiny piece of Earth, a new study suggests.

The Earth fragment was likely blasted off our planet by a powerful impact about 4 billion years ago, according to the new research.

It is an extraordinary find that helps paint a better picture of early Earth and the bombardment that modified our planet during the dawn of life,” study co-author David Kring, a Universities Space Research Association (USRA) scientist at the Lunar and Planetary Institute in Houston, said in a statement.

The research team — led by Jeremy Bellucci, of the Swedish Museum of Natural History, and Alexander Nemchin, of the Swedish Museum and Curtin University in Australia analyzed lunar samples collected by members of the Apollo 14 mission, which explored the lunar surface for a few days in early February 1971.

The scientists found that one rock contained a 0.08-ounce (2 grams) fragment composed of quartz, feldspar and zircon, all of which are rare on the moon but common here on Earth.

Chemical analyses indicated that the fragment crystallized in an oxidized environment, at temperatures consistent with those found in the near subsurface of the early Earth, study team members said.

An artist’s illustration of the Hadean Earth, when the rock fragment was formed. Impact craters, some flooded by shallow seas, cover large swaths of the Earth’s surface. The excavation of those craters ejected rocky debris, some of which hit the moon.

The available evidence suggests that the fragment crystallized 4.1 billion to 4 billion years ago about 12 miles (20 kilometers) beneath Earth’s surface, then was launched into space by a powerful impact shortly thereafter.

The voyaging Earth rock soon made its way to the moon, which was then about three times closer to our planet than it is today.

The fragment endured further trauma on the lunar surface. It was partially melted, and probably buried, by an impact about 3.9 billion years ago, then excavated by yet another impact 26 million years ago, the researchers said.

This photo by NASA’s Lunar Reconnaissance Orbiter shows the Apollo 14 landing site and nearby Cone Crater. The trail followed by the Apollo 14 astronauts can be seen. Image width is 1 mile (1.6 kilometers).

This latest collision created the 1,115-foot-wide (340 meters) Cone Crater, whose environs Apollo 14 astronauts Alan Shepard and Edgar Mitchell explored and sampled 47 years ago.

An Earth origin for the ancient fragment isn’t a slam dunk, study team members stressed.

However, it is the simplest explanation; a lunar birth would require a rethink of the conditions present in the moon’s interior long ago, the researchers said.

Please like, share and tweet this article.

Pass it on: New Scientist

The Truth About Empty Space

We often think of outer space as a never-ending vacuum filled with the occasional galaxy. What we don’t realize is that away from our eyes, this vacuum comes alive.

In order to understand what truly happens behind our backs in the vacuum, we must start by examining space itself.

So what is space? Quantum Field Theory tells us that space is composed of fundamental quantum fields, with a separate field for every particle that makes up our universe.

Electrons, quarks, neutrinos, and other fundamental particles are just the oscillations of the field with different energies. In specific, they have quantum energy, which exists as multiples of a baseline energy.

You can think of this as a ladder with energy levels. Each rung of the ladder represents the existence of one additional particle in that quantum state.

So the bottom of the ladder would be where there is no energy, meaning there are no particles. This is known as the vacuum state.

But as we will see, we cannot actually have zero-energy. Instead, the quantum field gently vibrates randomly. Sometimes this produces enough energy to form particles out of seemingly nothing!

The particles arising out of the fluctuation of quantum fields are called virtual particles.

Empty space is teeming with these virtual particles or “wiggles in the field”.

But there is a catch; these particles are created in particle and anti-particle pairs. They live only for a short instance of time until they destroy each other, popping in and out of existence.

The higher the energy of the particle, the lesser time it can exist. Wait a minute. Virtual Particles? That sounds sketchy. Let me show you the proof.

By definition, these elusive particles only exist when we aren’t watching, but their presence can be felt throughout the universe. In 1948, Hendrick Casimir came up with an ingenious idea to observe these virtual particles.

The Implications of Virtual Particles

Well, these seemingly insignificant particles have made quite an impact on the universe we know today. Not only do they explain “particle-particle interaction“, but they can be traced back to the origin of the universe itself!

Please like, share and tweet this article.

Pass it on: New Scientist

Here’s the Best-Ever Image of the Black Hole Devouring Our Galaxy

Researchers have captured the best-ever image of Sagittarius A*, the supermassive black hole at the center of our Milky Way galaxy, by using a new computer model to see through the haze of plasma surrounding the cosmic monster.

The galactic centre is full of matter around the black hole, which acts like frosted glass that we have to look through to see the black hole,” Max Planck Institute researcher Eduardo Ros said of the discovery.

Powerful Jet

Credit: The Astrophysical Journal

The fresh image of the black hole, which is twice the resolution of the previous best one, is described in a new paper in The Astrophysical Journal. 

Researchers used 13 powerful telescopes around the world to capture the image and have been teasing its release since earlier in January.

According to reports, strophysicists had assumed that such a black hole would show a gigantic jet of matter and radiation.

Surprisingly, they didn’t find such a jet coming out of the Milky Way’s monstrous black hole. Either it doesn’t have one — or they can’t see it because it’s pointed directly at us.

No Danger

Even if that were the case, Ros cautioned, it’s not cause for alarm.

If anything is there, it will be a length that is 1,000 times less than the distance to us,” Ros said. “There is no danger at all – we should not fear the supermassive black hole.

Please like, share and tweet this article.

Pass it on: New Scientist

NASA Spacecraft Finds Water In Search For Origins Of Life On Asteroid

A NASA spacecraft that just arrived last December 2018 on an asteroid has already made its first big discovery: ingredients for water.

Scientists hope that the OSIRIS-REx spacecraft will shed light on the mysteries of Bennu, an asteroid the size of a skyscraper that could hold clues to the origins of life on Earth.

The craft only arrived at the asteroid in recent days but the discovery of water is a major breakthrough that scientists hope can be matched by more discoveries in the future.

It was found when OSIRIS-REx flew close to the asteroid and picked up traces of hydrogen and oxygen molecules in its rocky surface. Those make up part of the recipe for water – itself a key ingredient in life itself.

The probe, on a mission to return samples from the asteroid to Earth for study, was launched in 2016. Bennu, roughly a third of a mile wide (500 meters), orbits the sun at roughly the same distance as Earth.

There is concern among scientists about the possibility of Bennu impacting Earth late in the 22nd century.

We have found the water-rich minerals from the early solar system, which is exactly the kind of sample we were going out there to find and ultimately bring back to Earth,” University of Arizona planetary scientist Dante Lauretta, the OSIRIS-REx mission’s principal investigator, said in a telephone interview.

Asteroids are among the leftover debris from the solar system’s formation some 4.5 billion years ago.

Scientists believe asteroids and comets crashing into early Earth may have delivered organic compounds and water that seeded the planet for life, and atomic-level analysis of samples from Bennu could provide key evidence to support that hypothesis.

OSIRIS-REx will pass later this month just 1.2 miles (1.9 km) from Bennu, entering the asteroid’s gravitational pull and analyzing its terrain.

From there, the spacecraft will begin to gradually tighten its orbit around the asteroid, spiraling to within just 6 feet (2 meters) of its surface so its robot arm can snatch a sample of Bennu by July 2020.

The spacecraft will later fly back to Earth, jettisoning a capsule bearing the asteroid specimen for a parachute descent in the Utah desert in September 2023.

Please like, share and tweet this article.

Pass it on: New Scientist