Tag: Telescope

New Telescope In Chile Unveils Stunning First Images

The first released VST image shows the spectacular star-forming region Messier 17, also known as the Omega Nebula or the Swan Nebula, as it has never been seen before. This vast region of gas, dust and hot young stars lies in the heart of the Milky Way in the constellation of Sagittarius (The Archer)

A new state-of-the-art telescope has snapped its first impressive images of the southern sky over the Paranal Observatory in Chile.

The VLT Survey Telescope (VST) is the latest addition to the European Southern Observatory’s network of telescopes at Paranal in the Atacama Desert of northern Chile.

The first image released from the VST shows the spectacular star-forming region Messier 17, also known as the Omega nebula or the Swan nebula, as it has never been seen before.

This nebula, full of gas, dust and hot young stars, lies in the heart of our Milky Way galaxy, in the constellation of Sagittarius.

The VST’s field of view is so large that is able to observe the entire nebula, including its fainter outer parts.

The second of the newly released images is a portrait of the star cluster Omega Centauri in unprecedented detail. Omega Centauri is the largest globular cluster in the sky and the VST’s view includes about 300,000 stars.

ESO’s new telescope

The VST is a 2.6-meter telescope with a 268-megapixel camera, called OmegaCAM, at its core. The visible-light telescope is designed to map the sky both quickly and with precise image quality.

The VST is a wide-field survey telescope with a field of view twice as broad as the full moon. It is the largest telescope in the world designed to exclusively survey the sky in visible light.

ESO officials oversee many telescopes based at three observing sites in Chile’s high Atacama Desert. In addition to the telescopes atop the summit of Cerro Paranal, the observatory has sites at La Silla and Chajnantor.

Mapping the cosmos

Over the next five years, the VST and its OmegaCAM will make three detailed surveys of the southern sky, and the data will be made public for astronomers around the world to analyze.

The KIDS survey will image several regions of the sky away from the Milky Way. The study aims to further astronomers’ understanding of dark matter, dark energy and galaxy evolution, and find many new galaxy clusters.

The VST ATLAS survey will cover a larger area of sky and focus on understanding dark energy and supporting more detailed studies using the VLT and other telescopes.

The third survey, VPHAS+, will image the central plane of the Milky Way to map the structure of the galactic disc and its star formation history.

VPHAS+ will yield a catalogue of around 500 million objects and is expected to discover many new examples of unusual stars at all stages of their evolution.

The VST project is a joint venture between ESO and the National Institute for Astrophysics (INAF) in Naples, Italy.

NASA’s Exoplanet-Hunter TESS Gets Prepped For Launch

Final preparations are underway here at Kennedy Space Center to get NASA’s next planet-hunting spacecraft, the Transiting Exoplanet Survey Satellite (TESS), ready for its planned April 16 launch.

The satellite, built by Orbital ATK, arrived here on Feb, 12 after a 17-hour drive down from Orbital’s facility in Dulles, Virginia, and was ushered inside the Payload Hazardous Servicing Facility (PHSF) to be readied for launch.

However, before it hitches a ride to space atop SpaceX’s Falcon 9 rocket, NASA invited members of the media to get a close-up look at TESS inside a specialized clean room.

The PHSF is one of the last stops a spacecraft makes before launch. Inside this unique facility, engineers conduct final tests and load hazardous fuels, such as hydrazine that will help propel the spacecraft.

Therefore, anyone who enters must follow a strict protocol, including wearing a special suit known as a bunny suit.

Before entering the clean room, a group of eager journalists were regaled with mission specifics by the TESS team, which included the mission’s principal investigator, George Ricker of MIT’s Kavli Institute for Astrophysics and Space Research.

The TESS mission, which is managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and operated by the Massachusetts Institute of Technology (MIT), will spend at least two years studying more than 200,000 of the closest and brightest stars in our solar neighborhood.

TESS will scan the sky, looking for tiny dips in starlight. These dips in brightness — known as transits — could indicate that one or more planets is orbiting the star.

Ricker said that the team expects to discover several thousand planets during the spacecraft’s mission.

The Kepler Space Telescope, NASA’s planet-hunting powerhouse, has identified more than 2,000 confirmed exoplanets using the same “transit” technique as TESS.

However, TESS has a much larger field of view — nearly 20 times larger than Kepler — potentially allowing it to surpass Kepler in the number of exoplanet discoveries.

Thanks to Kepler, we now know that planets around other stars are very common. Kepler spent its primary mission staring at a narrow patch of sky to answer that very question.

Unfortunately, all of Kepler’s discoveries are too far away for follow-up study.

Scheduled to launch next year, Webb will scan the targets identified by TESS to look for water vapor, methane and other atmospheric gases. And, with a little luck, Webb might even spot signatures indicative of life beyond Earth.

TESS will launch into a high, elliptical orbit around Earth that is in a 2:1 resonance with the moon — it will orbit twice for every one time the moon goes all the way around.

This type of orbit has multiple benefits: it is very stable, meaning it won’t be affected by space debris, radiation, while allowing the spacecraft to easily communicate with the ground.

However, this type of orbit limits the number of launch opportunities, as it must be synchronized with the moon’s orbit around the Earth. After launch, it will take the spacecraft two months to reach its destination.

During our visit, engineers were prepping the spacecraft for final testing before launch. That testing included final checkouts of the solar arrays and is expected to be completed February 21.

Next, TESS will be mated to the launch vehicle.

Originally slated to launch on March 20, TESS is currently scheduled to lift off on April 16, following a one-month delay requested by the launch provider, SpaceX. However, TESS must launch by June per congressional mandate.

Please like, share and tweet this article.

Pass it on: New Scientist

NASA’s Space Telescope Faces Cuts To Reduce Costs

Nasa plans to “downscope” one of its flagship missions to keep it within cost estimates. This almost certainly means reducing its scientific capabilities.

The Wide Field Infrared Survey Telescope (WFirst) is designed to study essential astrophysical and cosmological questions.

This ambitious mission began in 2016 when Nasa asked its scientists and engineers to come up with a mission that was as sensitive as the Hubble space telescope, but would have 100 times its field of view.

Initially, WFirst was projected to cost $1.6bn (£1.2bn), but that doubled as Nasa’s ambition grew. Earlier this year, an independent review panel found that the final cost was likely to be closer to $4bn.

This week Nasa decided to look at ways to return the costs to $3.2bn. These include using commercial rather than bespoke components and making cuts to the science instruments.

Although the cost-capping will affect the final science, it may be essential to ensure the mission goes ahead at all. In the past, NASA has cancelled missions that significantly overran their budgets.

WFirst’s primary mission is to determine the behaviour of the mysterious dark energy that is accelerating the expansion of the universe, and to map the distribution of the equally mysterious dark matter across space.

In addition, it will test a technology that will allow us to study the atmosphere of planets around other stars.

This technology is called a coronagraph, and blocks the light from a star, allowing the fainter planets to be seen around it.

Nasa will review the new design in February 2018, and decide whether to proceed to the next stage of the mission.

Please like, share and tweet this article.

Pass it on: New Scientist