Tag: Water

How to Mine Water on Mars to Survive on The Red Planet

The bone-dry desert of present-day Mars may seem like the last place you would look for water, but the Red Planet actually contains a wealth of water locked up in ice.

Evidence that Mars once supported liquid water has been mounting for years, and exploratory missions have found that water ice still exists on the planet’s poles and just beneath its dusty surface.

Accessing that water could require digging it up and baking it in an oven, or beaming microwaves at the soil and extracting the water vapor.

Yet no mission has attempted to extract water on Mars or any celestial body beyond Earth in appreciable quantities.

Now, the Netherlands-based organization Mars One, which wants to establish a permanent human settlement on the Red Planet, is planning to send an unmanned lander to Mars in 2018 that would carry an experiment to demonstrate that water extraction is possible.




Mined water could be used for drinking, growing plants or creating fuel.

Here on Earth, we’ve experimented with different technologies to extract moisture out of the atmosphere or soil,” said Ed Sedivy, civil space chief engineer at the security and aerospace company Lockheed Martin and program manager for NASA’s Phoenix lander flight system.

The question is, Sedivy said, “At the concentration of water we’re likely to encounter and the temperatures we’re likely to encounter [on Mars], how do we validate those technologies are appropriate?”

H2O on the Red Planet

Numerous studies have suggested that water exists on Mars, based on evidence from Mars orbiters and rovers such as outflow channels, ancient lakebeds, and surface rocks and minerals that could only have formed in the presence of liquid water.

Today, Mars is too frigid, and its atmospheric pressure is too low, to support liquid water on its surface — except for very short spans of time at low altitudes — but frozen water can be found in the planet’s ice caps and beneath the soil surface.

NASA’s Phoenix lander detected water ice at its landing site in 2008. The spacecraft dug up chunks of soil, and its onboard mass spectrometer found traces of water vapor when the sample was heated above freezing.

More recently, NASA’s Curiosity rover detected water molecules in soil samples analyzed by its SAM instruments, suggesting Martian soil contains about two pints of water per cubic foot of soil.

Please like, share and tweet this article.

Pass it on: New Scientist

Water Discovered In Underground Lake On Mars

Liquid water is refreshingly abundant on moons in the outer solar system, but it has proven surprisingly tough to find in reliable quantities on Mars—until now.

Radar scans of the red planet suggest that a stable reservoir of salty, liquid water measuring some 12 miles across lies nearly a mile beneath the planet’s south pole. What’s more, the underground lake is not likely to be alone.




There are other areas that seem to be similar. There’s no reason to say this is the only one,” says Elena Pettinelli of Italy’s Roma Tre University, a coauthor of the paper reporting the discovery today in the journal Science.

If confirmed, the buried pocket of water could answer a few questions about where Mars’s ancient oceans went, as well as provide a resource for future human settlements.

A self-portrait of the Mars rover Curiosity.

Even more thrilling for astrobiologists, such a feature may be an ideal habitat for extraterrestrial life-forms.

In this kind of environment that we know of on Earth, in the Antarctic, we have bacteria,” Pettinelli says. “They can be deep in the ice.”

Please like, share and tweet this article.

Pass it on: Popular Science

How Does Chlorine Work To Clean Swimming Pools?

Chlorine is the chemical most often used to keep swimming pools and Jacuzzis free of bacteria that can be hazardous to humans.

Chlorine kills bacteria though a fairly simple chemical reaction. The chlorine solution you pour into the water breaks down into many different chemicals, including hypochlorous acid (HOCl) and hypochlorite ion (OCl).

Both kill microorganisms and bacteria by attacking the lipids in the cell walls and destroying the enzymes and structures inside the cell, rendering them oxidized and harmless.

The difference between HOCl and OCl is the speed at which they oxidize. Hypochlorous acid is able to oxidize the organisms in several seconds, while the hypochlorite ion may take up to 30 minutes.

The levels of HOCl and OCl vary with the pool’s pH level. If the pH is too high, not enough HOCl is present and pool cleaning can take much longer than normal.




Ideally, the level of pH in the pool should be between 7 and 8; 7.4 is ideal — this is the pH of human tears.

Once the HOCl and OCl are done cleaning the pool, they either combine with another chemical, such as ammonia, or are broken down into single atoms. Both of these processes render the chlorine harmless.

Sunlight speeds these processes up. You have to keep adding chlorine to the pool as it breaks down.

While the bacteria-killing properties of chlorine are very useful, chlorine also has some side effects that can be annoying to humans, and possibly even hazardous.

Chlorine has a very distinctive smell that most find unpleasant, and some find overwhelming. There is also the “itch factor” — chlorine can cause certain skin types to become itchy and irritated.

The hypochlorite ion causes many fabrics to fade quickly when not rinsed off immediately after exiting the pool. This is why your swimsuit looks faded and worn so early in the summer.

Extremely high amounts of chlorine gas hovering above your pool can be hazardous to your breathing. Some companies have developed alternatives to chlorine, including other chemicals and ion generators.

Some of these are good alternatives, but they don’t achieve the cleanliness, oxidation levels or low price that chlorine provides.

Please like, share and tweet this article.

Pass it on: Popular Science

NASA Is Planning To Make Water And Oxygen On The Moon And Mars By 2020

NASA astronaut Kate Rubins works with a Nitrogen/Oxygen Recharge System tank aboard the International Space Station.

NASA is forging ahead with plans to make water, oxygen, and hydrogen on the surface of the Moon and Mars.

If we ever want to colonize other planets, it is vital that we find a way of extracting these vital gases and liquids from moons and planets, rather than transporting them from Earth.

The current plan is to land a rover on the Moon in 2018 that will try to extract hydrogen, water, and oxygen — and then hopefully, Curiosity’s successor will try to convert the carbon dioxide in the atmosphere into oxygen in 2020 when it lands on Mars.

In 2018, NASA hopes to put a rover on the Moon that will carry the RESOLVE (Regolith and Environment Science and Oxygen & Lunar Volatile Extraction) science payload.

RESOLVE will contain the various tools necessary to carry out in-situ resource utilization (ISRU).




Basically, RESOLVE will sift through the Moon’s regolith (loose surface soil) and heat them up, looking for traces of hydrogen and oxygen, which can then be combined to make water.

There is also some evidence that there’s water ice on the surface of the Moon — RESOLVE will find out for certain by heating the soil and seeing of water vapor emerges.

A similar payload would be attached to Curiosity’s successor, which is currently being specced out by NASA and will hopefully launch in 2020.

This second IRSU experiment will probably suck in carbon dioxide from the Martian atmosphere, filter out the dust, and then process the CO2 into oxygen.

If either tech demonstration works as planned, future missions might include large-scale ISRU devices that are capable of producing significant amounts of hydrogen, oxygen, and water on the Moon or Mars.

This would probably be the most important advance since we first landed on the Moon in the ’60s. Basically, as it stands, space travel needs lots of hydrogen and oxygen and water.

Water has the unfortunate characteristic of being both heavy and incompressible, meaning it’s very difficult and expensive to lift large amounts of it into space (gravity can be really annoying sometimes).

Likewise, unless we come up with some other way of powering our spacecraft, it’s infeasible to carry the rocket fuel that we’d need for exploration from Earth.

In short, if we want to colonize space, we really, really need some kind of base outside of the Earth’s atmosphere, preferably on the Moon — but Mars would be good, too.

Please like, share and tweet this article.

Pass it on: Popular Science

New Dive Into Old Data Finds Plumes Erupt From Jupiter’s Moon Europa

Spinnable maps of Jupiter and the Galilean moons.

Europa is an ice-encrusted moon of Jupiter with a global ocean flowing underneath its surface. NASA is planning a mission soon that will look for signs of possible life there.

Now, a new finding from old data makes that mission even more tantalizing.

In recent years, the Hubble Space Telescope has spotted what looks like plumes, likely of water vapor, reaching more than 100 miles above the surface.

The plumes, if they exist, could contain molecules that hint at whether Europa possesses the building blocks of life.

In a study published Monday in the journal Nature Astronomy, scientists are reporting a belated discovery that Galileo, an earlier NASA spacecraft that studied Jupiter, appears to have flown through one of the Europa plumes more than 20 years ago.

And that occurred close to one of four regions where Hubble has observed plumes.




That’s too many coincidences just to dismiss as ‘There’s nothing there’ or ‘We don’t understand the data,’” said Robert T. Pappalardo, the project scientist for NASA’s upcoming Europa Clipper mission, which may launch as soon as 2022.

“It sure seems like there’s some phenomenon, and plumes seem consistent.”

Galileo, which launched in 1989, arrived at Jupiter in 1995 and spent almost eight years examining the planet and its moons until its mission ended with a swan dive into Jupiter in 2003.

During a flyby of Europa on Dec. 16, 1997, instruments on Galileo measured a swing in the magnetic field and a jump in the density of electrons. At the time, scientists noted the unusual readings, but they did not have an explanation.

An image taken by the Cassini spacecraft in 2010 showing Saturn’s moon Enceladus, which also shoots plumes of ice crystals into space.Credit

Then, in 2005, another spacecraft passing by another moon around another planet made a startling observation.

NASA’s Cassini spacecraft — which completed its mission last September — found geysers of ice crystals erupting out of Enceladus, a small moon of Saturn. Enceladus, it turns out, also has an ocean of liquid water under its ice.

That spurred renewed curiosity about Europa and whether it too might burp bits of its ocean into space. The Hubble first recorded signs of possible plumes in 2012, then again in 2014 and 2016.

But at other times, Hubble has looked and seen nothing. That suggests the plumes are sporadic.

An image of Europa’s surface. Scientists hope the Europa Clipper mission, which may launch in 2022, can be tweaked to allow one of its 40 planned flybys to pass through a plume.

Last year, Melissa A. McGrath, a senior scientist at the SETI Institute in Mountain View, Calif. who was not involved in the new study, took a look at some radio experiments conducted by Galileo which examined how signals bent as Europa passed between Earth and the spacecraft.

The experiments showed Europa possesses an atmosphere.

Astronomers will certainly be taking more looks at Europa with the Hubble, trying to better understand how often the plumes erupt.

Please like, share and tweet thi article.

Pass it on: Popular Science

Water On Mars: Exploration & Evidence

Liquid water may still flow on Mars, but that doesn’t mean it’s easy to spot. The search for water on the Red Planet has taken more than 15 years to turn up definitive signs that liquid flows on the surface today.

In the past, however, rivers and oceans may have covered the land. Where did all of the liquid water go?

Why? How much of it still remains?




Liquid water appears to flow from some steep, relatively warm slopes on the Martian surface.

Features known as recurring slope lineae (RSL) were first identified in 2011in images taken by the High Resolution Imaging Science Experiment (HiRISE) camera aboard the Mars Reconnaissance Orbiter (MRO).

The dark streaks, which appear seasonally, were confirmed to be signs of salty water running on the surface of the planet.

If this is correct, then RSL on Mars may represent the surface expression of a far more significant ongoing drainage system on steep slopes in the mid-latitudes,” a research team member said.

In 2015, spectral analysis of RSL led scientists to conclude they are caused by salty liquid water.

When Mariner 9 became the first craft to orbit another planet in 1971, the photographs it returned of dry river beds and canyons seemed to indicate that water had once existed on the Martian surface.

Images from the Viking orbiters only strengthened the idea that many of the landforms may have been created by running water.

Data from the Viking landers pointed to the presence of water beneath the surface, but the experiments were deemed inconclusive.

The early ’90s kicked off a slew of Mars missions. Scientists were flooded with a wealth of information about Mars.

Three NASA orbiters and one sent by the European Space Agency studied the planet from above, mapping the surface and analyzing the minerals below.

Some detected the presence of minerals, indicating the presence of water. Other data measured enough subsurface ice to fill Lake Michigan twice.

They found evidence for the presence of hot springs on the surface and sustained precipitation at some areas. And they found patches of ice within some of the deeper craters.

Impact craters offer a view of the interior of the red planet.

Using the ESA’s Mars Express and NASA’s Mars Reconnaissance Orbiter, scientists were able to study rocks ejected from the planet’s interior, finding minerals that suggested the presence of water.

Curiosity has found yet more evidence of water flowing on ancient Mars.

The 1-ton rover rolled through an ancient stream bed shortly after touching down in August 2012, and it has examined a number of rocks that were exposed to liquid water billions of years ago.

Mars missions aren’t the only way to search for water on Mars. Scientists studying rocks ejected from the Red Planet found signs that water lay beneath the surface in the past.

While robotic missions to Mars continue to shed light on the planet’s history, the only samples from Mars available for study on Earth are Martian meteorites,” lead author Lauren White, of the JPL, said in a statement.

On Earth, we can utilize multiple analytical techniques to take a more in-depth look at meteorites and shed light on the history of Mars.

Please like, share and tweet this article.

Pass it on: New Scientist

How Much Water Pressure Can The Human Body Take?

Depending on how you look at it, the human body is either one of the most vulnerable things on the planet, or one of the most resilient.

It’s true we can do amazing things — heal where we once were bleeding, attack and destroy unfriendly microbial invaders, even knit our own bones back together.

But despite our many abilities, we’re still pretty delicate when you consider the universe around us.

There’s only a tiny window of conditions in which we can thrive, and things that are rather inconsequential in the universe — a dip in oxygen, shocking cold, a flare of nuclear radiation — would mean the end of us in the blink of an eye.

But what exactly can we take? What are the limits of our survival, and what happens to our body if we cross them?

Here we explore the body’s (many) breaking points. First up: water pressure.




What is pressure?

Pressure can generally be defined as the force, per unit area, applied to the surface of something. We’re always under a certain amount of pressure, we just don’t notice.

We hear about air pressure on the weather channel, but we actually have our own pressure in air-filled spaces of our body like our lungs, stomach, and ears.

Our internal pressure is usually equal to the outside air pressure (the weight of the atmosphere pushing down on us.)

We become uncomfortable whenever we venture away from sea level; our internal pressure is no longer equal to the ambient pressure. This is why our ears hurt when we go up in a plane or when we dive too deep underwater.

Underwater Pressure

Ever wonder why we can’t just create extra-long snorkels to breathe underwater? Seems like an obvious and easy solution for breathing without an oxygen tank, but there’s a good reason this can’t work.

For every 33 feet a diver descends the weight of the water above them increases by 15 pounds per square inch.

At only a few feet below the surface, the water pressure is already too great for the muscles that expand and contract our lungs to work, making it extremely difficult for us to draw breath.

A couple feet of water pressure isn’t enough to do serious damage yet, but looking at deeper levels shows how pressure affects us a little more gradually.

At a depth of around 100 feet, the spongy tissue of the lung begins to contract, which would leave you with only a small supply of air that was inhaled at the surface.

An ancient “dive-response” is then triggered in our body, which constricts the limbs and pushes blood toward the needier heart and brain.

If you somehow got stuck in the middle of an oceanic abyss, the deepest part of the ocean, you’d have a few things to worry about.

The lack of breathable oxygen, freezing cold, and these charming creatures, to name a few, but the huge amount of water pressure pressing down on you would definitely be the immediate threat.

Since your body’s internal pressure is so much less than the ambient pressure, your lungs would not have the strength to push back against the water pressure.

At a deep enough level, the lungs would collapse completely, killing you instantly.

This is the most extreme consequence of underwater pressure, but thankfully most of us will never have to deal with ocean depths of this magnitude.

So, how deep can we go? Scientists haven’t yet determined a hard limit for how deep we can survive underwater.

There have been a few instances of divers surviving ridiculous depths (not without side effects), but most professional free divers don’t go past 400 feet deep.

The only way to test a limit would be to test on a real, live human, so obviously there are no handy studies to help us formulate an answer.

Scientists do know, however, what would happen to a diver who crossed their body’s limit. A diver could die from bleeding into the lungs, or pass out from the strain the redistribution of blood lays on the heart.

Please like, share and tweet this article.

Pass it on: Popular Science

TRAPPIST-1 Planets Probably Rich In Water

Planets around the faint red star TRAPPIST-1, just 40 light-years from Earth, were first detected by the TRAPPIST-South telescope at ESO’s La Silla Observatory in 2016.

In the following year further observations from ground-based telescopes, including ESO’s Very Large Telescope and NASA’s Spitzer Space Telescope, revealed that there were no fewer than seven planets in the system, each roughly the same size as the Earth.

They are named TRAPPIST-1b,c,d,e,f,g and h, with increasing distance from the central star.

Further observations have now been made, both from telescopes on the ground, including the nearly-complete SPECULOOS facility at ESO’s Paranal Observatory, and from NASA’s Spitzer Space Telescope and the Kepler Space Telescope.

A team of scientists led by Simon Grimm at the University of Bern in Switzerland have now applied very complex computer modelling methods to all the available data and have determined the planets’ densities with much better precision than was possible before.




Simon Grimm explains how the masses are found: “The TRAPPIST-1 planets are so close together that they interfere with each other gravitationally, so the times when they pass in front of the star shift slightly.

“These shifts depend on the planets’ masses, their distances and other orbital parameters. With a computer model, we simulate the planets’ orbits until the calculated transits agree with the observed values, and hence derive the planetary masses.”

Team member Eric Agol comments on the significance: “A goal of exoplanet studies for some time has been to probe the composition of planets that are Earth-like in size and temperature.

“The discovery of TRAPPIST-1 and the capabilities of ESO’s facilities in Chile and the NASA Spitzer Space Telescope in orbit have made this possible — giving us our first glimpse of what Earth-sized exoplanets are made of!

The measurements of the densities, when combined with models of the planets’ compositions, strongly suggest that the seven TRAPPIST-1 planets are not barren rocky worlds.

They seem to contain significant amounts of volatile material, probably water, amounting to up to 5% the planet’s mass in some cases — a huge amount; by comparison the Earth has only about 0.02% water by mass!

TRAPPIST-1b and c, the innermost planets, are likely to have rocky cores and be surrounded by atmospheres much thicker than Earth’s.

TRAPPIST-1d, meanwhile, is the lightest of the planets at about 30 percent the mass of Earth. Scientists are uncertain whether it has a large atmosphere, an ocean or an ice layer.

Scientists were surprised that TRAPPIST-1e is the only planet in the system slightly denser than Earth, suggesting that it may have a denser iron core and that it does not necessarily have a thick atmosphere, ocean or ice layer.

It is mysterious that TRAPPIST-1e appears to be so much rockier in its composition than the rest of the planets.

In terms of size, density and the amount of radiation it receives from its star, this is the planet that is most similar to Earth.

TRAPPIST-1f, g and h are far enough from the host star that water could be frozen into ice across their surfaces.

If they have thin atmospheres, they would be unlikely to contain the heavy molecules that we find on Earth, such as carbon dioxide.

Astronomers are also working hard to search for further planets around faint red stars like TRAPPIST-1. As team member Michaël Gillon explains: “This result highlights the huge interest of exploring nearby ultracool dwarf stars — like TRAPPIST-1 — for transiting terrestrial planets.

“This is exactly the goal of SPECULOOS, our new exoplanet search that is about to start operations at ESO’s Paranal Observatory in Chile.

Please like, share and tweet this article.

Pass it on: Popular Science

According To Some Research, Earth’s Nearest Dwarf Planet Ceres Is Still Evolving And May Have Its Own Water Cycle

It may be the largest object in the asteroid belt that sits beyond Mars, but the dwarf planet Ceres has been surprising scientists ever since it was discovered.

The latest findings suggests that water – one of the key ingredients for life – is present across the entire surface of the rocky planetoid.

What’s more, the distribution of these icy patches suggests the dwarf is still evolving suggesting it may have its own water cycle beneath the surface.

Ceres is of particular interest to scientists because it is the closest dwarf planet to Earth and may play host to the building blocks needed for alien life.

NASA’s Dawn probe has been mapping the object since 2015 and, in a new study, experts used images captured by the craft to study chemicals on Ceres’ surface.




Specifically it looked at carbonates, compounds that have previously been detected by Dawn, which are thought to be strong indicators of liquid water.

Researchers at Italy’s Institute of Astrophysics and Space Planetology in Rome used the probe’s visible-infrared mapping spectrometer to anaylse the planet.

They found that sodium carbonates, salts of carbonic acid, can be found across the entire observed surface of Ceres. The camera reads the chemical spectrum of compounds found far below the planet’s exterior to identify them.

Some carbonate patches, which are as long as a kilometre-wide (0.6 miles), featured sodium carbonate in its hydrated form.

This could only occur around liquid water, suggesting the dwarf planet has a subsurface ocean.

The distribution of these icy patches across Ceres suggests the dwarf planet is still evolving and may have its own subsurface water cycle, researchers found. To measure these icy patches, scientists looked at how carbonates (green and purple) were distributed across Ceres.

The Italian team, led by Dr Filippo Carrozzo, wrote in their paper: “Hydrated sodium carbonates could form early in a global ocean in equilibrium with the altered rocky phase and be incorporated in Ceres’ crust upon freezing of that ocean.

The chemicals could have formed as recently as a few million years ago, the researchers said.

Because they haven’t yet dehydrated, scientists suggest the planet must still be spewing water from its surface and hence is still evolving.

Patches of hydrated sodium carbonate were found by the team around craters with domes or mounds.

Some craters showed unique characteristics, such as floor fractures, that the authors say indicate areas where water had been ejected.

Patches of hydrated sodium carbonate (green and red) were found around craters with domes or mounds by the team. Some craters showed unique characteristics, such as floor fractures, that the authors say indicate areas where water had been ejected.

The researchers also focused on patches of ice covering the walls of Ceres’s Jugling impact crater.

The crater, found on Ceres’s southern hemisphere, is shadowy, dark and unlike other northern hemisphere craters where water ice has previously been found.

To better understand Juling’s water ice features, the Italian team analysed light spectrum data previously obtained by the Dawn mission.

Specifically, they compared how the amount of ice on the crater’s walls has changed over time as the sun shone on different regions.

Their results showed a clear increase of the area covered by the crater’s ice-rich wall as time progressed.

According to the authors, the trend between ice abundance and solar flux suggests that seasonal cycles of water are responsible for the observed increase.

Please like, share and tweet this article.

Pass it on: New Scientist

Ice Chunks Are Fascinating To Look At, But Can Cause Serious Flooding

Mohawk River ice jam: Giant chunks of ice washed up on the shore of the Mohawk River.

The weather has been all over the spectrum in the last few weeks.

Record-breaking frigid temperatures and wind chills kicked off 2018, followed by temperatures into the 50s and 60s last week.

Temperatures plummeted to start off this week, and central Pennsylvania woke up Wednesday to a few inches of fresh snowfall.




A gradual warmup is expected into this weekend, with highs in the 50s predicted. The upcoming warmup has meteorologists keeping an eye on what the warmer weather could mean for ice jams in rivers and streams.

It’s something we’re going to have to keep an eye on,” said Craig Evanego, a meteorologist with National Weather Service.

Evanego explained the warmer temperatures could enable ice jams to break free and move down rivers and streams.

He added that some areas in the northern part of the state are already experiencing ice jam issues on localized streams thanks to elevated water levels.

Frozen river ice: Frozen river ice melts in layers as chunks wash up on shore.

With the gradual warmup, we’ll see if things will begin to thaw and move down the (Susquehanna) river,” Evanego said.

Senior meteorologist Alex Sosnowski with AccuWeather said that thanks to the persistent cold, pretty thick layers of ice have been able to form.

Along with fluctuating temperatures, Sosnowski said river levels are a little higher, adding that another rain event is expected from Monday to Wednesday next week.

Mohawk River ice jam: Jams can cause floods, which threaten buildings near the banks.

Sosnowski explained a major risk with ice jams is that when they break free, they send a surge of water down the river, which can cause flooding in unprotected areas.

Sosnowski expected that levee systems should be able to protect against any flooding caused by ice packs, and said unprotected areas are at the most risk for flooding.

Sosnowski encouraged those who want to go out and observe ice packs to do so carefully, as they can break away and begin drifting downstream at any time.

Please like, share and tweet this article.

Pass it on: Popular Science