Tag: Solar System

Mysterious Interstellar Object Floating In Space Might Be Alien, Say Harvard Researchers

A graphic showing `Oumuamua’s path through the Solar System.

The head of Harvard’s department of astronomy thinks that there’s a possibility that a strange object that visited our Solar System from interstellar space may be an alien probe sent from a distant civilization.

He and a colleague outlined their idea in a paper published this week analyzing what the mysterious space object might be, setting off a media frenzy.

But let’s take a breath before we jubilantly cry “aliens.” A single idea about what this object could be doesn’t make it the only explanation, and many scientists still argue that a natural explanation is more plausible.

To add a bit of context, one of the scientists making this “exotic” claim is currently working on an initiative to look for extraterrestrial life in deep space, by sending probes from Earth to other star systems.

The paper that captured everyone’s attention is written by Harvard astrophysicists Avi Loeb and Shmuel Bialy, who tried to describe some weird behavior exhibited by a space rock called `Oumuamua.

Spotted last October, `Oumuamua is a mysterious object that is passing through our Solar System, coming from some unknown deep-space origin.

Objects like this one are thought to pass through our Solar System all the time, but this is the first exo-comet — or a comet from outside our cosmic neighborhood — that we’ve ever detected.

In addition to being a rare find, `Oumuamua is a bit bizarre. Astronomers expected a visitor of this kind to be an icy comet, surrounded by a trail of gas and dust as it passed close to the Sun.




But `Oumuamua seems to lack this kind of cloud, making it look more like an asteroid, which is mostly made of rock and metal. So no one was quite sure what this thing was — a comet, an asteroid, or something totally new.

Then after analyzing `Oumuamua’s orbit, scientists from the European Space Agency noticed that the object was accelerating, more so than it should be if it was just interacting with the gravity of the planets and Sun in our Solar System.

They concluded that `Oumuamua must be a comet; the Sun is likely heating up ice within the object, creating gas that provides an extra boost of speed.

However, Loeb and Bialy are skeptical about this “outgassing” claim, mostly because no one was able to observe gas and dust coming from `Oumuamua.

They also point to recent research from another lab, which is still under review by other scientists, that indicates that if gas were coming from this object, it would change how the rock is rotating — something that hasn’t been observed.

This rules out the possibility that it’s a comet,” Loeb said.

The comet ISON and its tail of gas and dust, as seen by the Hubble Space Telescope

Of course, the possibility exists. But aliens are a very bold claim to make when natural explanations are still on the table.

I can understand the excitement, and as a scientist, I can’t sit here and say I have 100 percent evidence this was a natural object,” Fitzsimmons says. “It’s just that all the observations can be matched with a natural object.”

And that could be a problem when we actually do find signs of alien life one day.

Astronomers are finding new planets outside our Solar System all the time, and we’re working on more sophisticated technology to peer into the atmospheres of these worlds.

One day, we may find solid evidence that life exists in deep space, but it may be hard for the public to swallow if they think aliens have already been discovered.

I don’t want people to think we already saw that when it actually happens,” says Mack. “I want people not to be super cynical about claims about aliens by the time we actually have something that is really solid evidence.”

Please like, share and tweet this article.

Pass it on: Popular Science

NASA’s Revolutionary Planet-Hunting Telescope Kepler Runs Out of Fuel

NASA’s prolific Kepler Space Telescope has run out of fuel, agency officials announced on Oct. 30, 2018. The planet-hunting space telescope discovered thousands of alien worlds around distant stars since its launch in 2009.

The most prolific planet-hunting machine in history has signed off.

NASA’s Kepler space telescope, which has discovered 70 percent of the 3,800 confirmed alien worlds to date, has run out of fuel, agency officials announced last October 30.

Kepler can no longer reorient itself to study cosmic objects or beam its data home to Earth, so the legendary instrument’s in-space work is done after nearly a decade.

And that work has been transformative.

“Kepler has taught us that planets are ubiquitous and incredibly diverse,” Kepler project scientist Jessie Dotson, who’s based at NASA’s Ames Research Center in Moffett Field, California said.




“It’s changed how we look at the night sky.”

The announcement was not unexpected. Kepler has been running low on fuel for months, and mission managers put the spacecraft to sleep several times recently to extend its operational life as much as possible.

But the end couldn’t be forestalled forever; Kepler’s tank finally went dry two weeks ago, mission team members said during a telecon with reporters today.

This marks the end of spacecraft operations for Kepler, and the end of the collection of science data,” Paul Hertz, head of NASA’s Astrophysics Division, said during the telecon.

Prepping the Kepler spacecraft pre-launch in 2009.

Even though Kepler has closed its eyes, discoveries from the mission should keep rolling in for years to come.

About 2,900 “candidate” exoplanets detected by the spacecraft still need to be vetted, and most of those should end up being the real deal, Kepler team members have said.

A lot of other data still needs to be analyzed as well, Dotson stressed.

And Kepler will continue to live on in the exoplanet revolution it helped spark.

For example, in April, NASA launched a new spacecraft called the Transiting Exoplanet Survey Satellite (TESS), which is hunting for alien worlds circling stars that lie relatively close to the sun (using the transit method, just like Kepler).

Kepler’s death “is not the end of an era,” Kepler system engineer Charlie Sobeck, also of NASA Ames said. “It’s an occasion to mark, but it’s not an end.”

Please like, share and tweet this article.

Pass it on: Popular Science

Asteroid or Comet: What’s the Difference?

Anything that comes close to the earth from outer space is known as a near-earth object (NEO).

These include asteroids and comets that may have been pushed out of their normal direction and then begin to head to earth.

While both comets and asteroids are included in this group, there are things that make them quite alike as well as different.

They are believed to be left over material from the beginning of our solar system, over 4 billion years ago.

In the early years of earth’s creation, many hit the earth and if you look at the moon you can still see the craters that are left by the impacts.

Both asteroids and comets played a major role in building our solar system, as we believe that in hitting the planets, they actually became part of the planets.

The difference between them is mainly what they are made of.  Comets are made of rock, ice and organic compounds. They are sometimes called ‘dirty snowballs’.

Although they are thought to have originally been made in the farthest sections of the solar system, they travel specific paths due to both planetary and the sun’s gravitational pull.

As a comet nears the heat source of the sun, the ice melts and creates a gas. When traveling, the gas is reflected by the sun and we can sometimes see it from the earth.




The gaseous ‘tail’ can be as long as thousands of miles. Scientists believe that when the earth was first forming, the water that is contained in the comets hit the earth and contributed to developing our oceans.

It’s also believed that this affected the climate and possibly deposited carbon-based molecules that may have helped to start life on the planet.

In ancient times, people thought that seeing a comet could be considered a ‘sign’. Some considered it bad, while other cultures thought it was good.

Asteroids are either made up of rock or rock and some metals, like nickel and iron.

Some asteroids look like one big piece while others are actually clusters of smaller pieces that are being held together with the gravity from the whole asteroid.

 

There are a small amount of asteroids that are actually burned out comets who lost all of their ice long ago and drift in space.

Almost all of the asteroids originate in the asteroid belt that is between Jupiter and Mars.  Jupiter’s massive gravity acts like a kind of guardian, keeping most of the asteroids away from earth.

Asteroids bang and knock into each other in the asteroid belt, and occasionally the force is strong enough to send one spinning into the solar system.

This puts all of the planets at risk from being hit.  Some of the smaller asteroids have come close to the earth and break up in the atmosphere. We call these ‘shooting stars’.

There are, however, a lot of larger asteroids in the solar system that could hit earth and do a lot of damage. Thankfully, we have Jupiter to help keep them away.

Please like, share and tweet this article.

Pass it on: Popular Science

According To NASA, Voyager 2 May Be Leaving the Solar System Soon

This NASA diagram illustrates the hypothesized positions of Voyagers 1 and 2 in the solar system as of October 2018. Voyager 1 reached interstellar space in 2012. Voyager 2 may soon hit that milestone.

Want to get away? Want to get far, far away? Voyager 2 has you beat: The spacecraft, launched in 1977, is approaching the edge of the solar system, according to a NASA statement released today (Oct. 5).

That announcement is based on two different instruments on board, which in late August began noticing a small uptick in how many cosmic rays — superfast particles pummeling the solar system from outer space — were hitting the spacecraft.

That matches pretty well with what Voyager 1 began experiencing about three months before its own grand departure in 2012, but scientists can’t be sure of the milestone until after it has been passed.

We’re seeing a change in the environment around Voyager 2, there’s no doubt about that,” Voyager Project Scientist Ed Stone, a physicist at Caltech, said in the statement.




We’re going to learn a lot in the coming months, but we still don’t know when we’ll reach the heliopause. We’re not there yet — that’s one thing I can say with confidence.

The team behind Voyager 2 knows that the spacecraft is currently almost 11 billion miles (17.7 billion kilometers) away from Earth.

But it’s hard to predict when the spacecraft will actually leave the solar system by passing through what scientists call the heliopause.

The heliopause is the bubble around our solar system formed by the solar wind, the rush of charged particles that constantly streams off our sun.

The rate of energetic interstellar particles detected by Voyager 2 started to rise at the end of August 2018. Each point represents a 6-hour average.

But that solar wind ebbs and flows over the course of the sun’s 11-year cycle, which means that the bubble of our solar system itself expands and contracts.

And because Voyager 2 isn’t following precisely in its predecessor’s steps, scientists aren’t positive that its cosmic exit will result in identical changes to the data that the spacecraft reports.

So until Voyager 2 passes through the heliopause, there’s no way to be sure precisely where it is with regard to the heliopause.

Whenever it does successfully flee the solar system, Voyager 2 will become just the second human-made object to do so.

Please like, share and tweet this article.

Pass it on: Popular Science

Goblin, The Hidden Planet Nine, Lurking In Outskirts Of Our Solar System?

There is a growing evidence that our solar system has another Planet Nine or Planet X that is orbiting the Sun at a great distance.

Astronomer Scott S. Sheppard of the Carnegie Institution for Science in Washington and his team explained the orbital details of the planet, which they have nicknamed Goblin, while officially it is designated in 2015 as TG387.

The team took three years to figure out the orbit of the Planet, which is interesting. Their findings have been published in the Astronomical Journal.

Distanced at about 7.4 billion miles from the sun, or about 2.5 times farther away than Pluto, the planet’s most distant end of its elliptical, 40,000-year orbit, is nearly 70 times farther from the sun than Pluto.

However, TG387 remains far beyond the pull of the gravitation of Jupiter, Saturn, Uranus and Neptune, and astronomers have now discovered several bodies with such distant orbits.




In 2016, Michael Brown and Konstantin Batygin of the California Institute of Technology, originally predicted about an unseen planet, bigger than Earth yet smaller than Neptune. And it was named Planet Nine.

Ann-Marie Madigan, an astronomer at the University of Colorado, has suggested that gravity from a massive ring of small worlds early in the solar system’s history could explain the distant orbits.

“This new object does look like it’s quite good for the Planet Nine theory,” Madigan said.

Dr. Brown, who is behind Pluto’s demotion as a dwarf planet, is currently leading the search for Planet Nine. “Mostly it’s just another piece that fits in the puzzle very nicely,” said Brown.

Unseen by any earth-based telescope, TG387 is extremely lucky to have been located. We think there are thousands of these, and most of them are too distant to detect,” said Sheppard.

The discovery of the new planet may now trigger conspiracy theorists to claim that it could be the Nibiru, a rogue planet lurking outside our solar system to enter any time to cause destruction.

Please like, share and tweet this article.

Pass it on: Popular Science

Astronomers May Have Discovered The First Moon Ever Found Outside Our Solar System

An artistic rendering of the Kepler-1625b planetary system.

A pair of astronomers believes they’ve found a moon orbiting a planet outside our Solar System — something that has never before been confirmed to exist.

Though they aren’t totally certain of their discovery yet, the find opens up the possibility that more distant moons are out there. And that could change our understanding of how the Universe is structured.

The astronomy team from Columbia University found this distant satellite, known as an exomoon, using two of NASA’s space telescopes.

They first spotted a signal from the object in data collected by the planet-hunting telescope Kepler, and then they followed up with the Hubble Space Telescope, which is in orbit around Earth.

Thanks to the observations from these two spacecraft, the team suspect this moon orbits around a Jupiter-sized planet located about 4,000 light-years from Earth. And this planet, dubbed Kepler-1625b, orbits around a star similar to our Sun.

Scientists have strongly believed for decades that moons exist outside our Solar System, but these objects have remained elusive for scientists up until now.




There have been just a couple of candidates that astronomers have speculated about in the past, but nothing has been confirmed.

That’s because moons are thought to be too small and too faint to pick up from Earth. However, this suspected exomoon, detailed today in the journal Science Advances, is particularly large, about the size of Neptune, making it one of the few targets that our telescopes can detect.

You can make the argument that this is the lowest hanging fruit,” Alex Teachey, an astronomy graduate student at Columbia University and one of the lead authors on the paper said.

“Because it is so large, in some ways, this is the first thing we should detect because it is the easiest.”

Teachey argues that finding more moons outside our Solar System will change our understanding of how planetary systems formed thousands of light-years away.

Our cosmic neighborhood is filled with moons, and they explain a lot about how our planets came to be. Exomoons could tell similar tales.

NASA’s Hubble Space Telescope.

However, none of our moons come close to the size of this one, which creates a puzzle for astronomers.

Because it is so unusual, or at least has not been anticipated largely by the community, this poses new challenges to explain it,” says Teachey. “How do you get something like this?

It was only a few decades ago — in the late 1980s and early 1990s — that astronomers confirmed the existence of planets outside our Solar System.

Since then, thousands of these distant worlds, known as exoplanets, have been confirmed by spacecraft like Kepler and other telescopes.

Perhaps the most popular way to find exoplanets is by staring at stars, waiting for them to flicker. When a planet crosses “in front” of its host star, it dims the stars’ light ever so slightly.

These dips in brightness can be used to determine how big a planet is and the kind of orbit it’s on.

Please like, share and tweet this article.

Pass it on: Popular Science

NASA’s TESS Shares First Science Image in Hunt to Find New Worlds

NASA’s newest planet hunter, the Transiting Exoplanet Survey Satellite (TESS), is now providing valuable data to help scientists discover and study exciting new exoplanets, or planets beyond our solar system.

Part of the data from TESS’ initial science orbit includes a detailed picture of the southern sky taken with all four of the spacecraft’s wide-field cameras.

This “first light” science image captures a wealth of stars and other objects, including systems previously known to have exoplanets.

In a sea of stars brimming with new worlds, TESS is casting a wide net and will haul in a bounty of promising planets for further study,” said Paul Hertz, astrophysics division director at NASA Headquarters in Washington.

This first light science image shows the capabilities of TESS’ cameras, and shows that the mission will realize its incredible potential in our search for another Earth.

TESS acquired the image using all four cameras during a 30-minute period on Tuesday, Aug. 7. The black lines in the image are gaps between the camera detectors.

The images include parts of a dozen constellations, from Capricornus to Pictor, and both the Large and Small Magellanic Clouds, the galaxies nearest to our own.

The small bright dot above the Small Magellanic Cloud is a globular cluster — a spherical collection of hundreds of thousands of stars — called NGC 104, also known as 47 Tucanae because of its location in the southern constellation Tucana, the Toucan.




Two stars, Beta Gruis and R Doradus, are so bright they saturate an entire column of pixels on the detectors of TESS’s second and fourth cameras, creating long spikes of light.

This swath of the sky’s southern hemisphere includes more than a dozen stars we know have transiting planets based on previous studies from ground observatories,” said George Ricker, TESS principal investigator at the Massachusetts Institute of Technology’s (MIT) Kavli Institute for Astrophysics and Space Research in Cambridge.

TESS’s cameras, designed and built by MIT’s Lincoln Laboratory in Lexington, Massachusetts, and the MIT Kavli Institute, monitor large swaths of the sky to look for transits.

Transits occur when a planet passes in front of its star as viewed from the satellite’s perspective, causing a regular dip in the star’s brightness.

TESS will spend two years monitoring 26 such sectors for 27 days each, covering 85 percent of the sky. During its first year of operations, the satellite will study the 13 sectors making up the southern sky.

Then TESS will turn to the 13 sectors of the northern sky to carry out a second year-long survey.

MIT coordinates with Northrop Grumman in Falls Church, Virginia, to schedule science observations. TESS transmits images every 13.7 days, each time it swings closest to Earth.

NASA’s Deep Space Network receives and forwards the data to the TESS Payload Operations Center at MIT for initial evaluation and analysis.

Full data processing and analysis takes place within the Science Processing and Operations Center pipeline at NASA’s Ames Research Center in Silicon Valley, California, which provides calibrated images and refined light curves that scientists can analyze to find promising exoplanet transit candidates.

TESS builds on the legacy of NASA’s Kepler spacecraft, which also uses transits to find exoplanets. TESS’s target stars are 30 to 300 light-years away and about 30 to 100 times brighter than Kepler’s targets, which are 300 to 3,000 light-years away.

The brightness of TESS’ targets make them ideal candidates for follow-up study with spectroscopy, the study of how matter and light interact.

Please like, share and tweet this article.

Pass it on: Popular Science

Over The Past Nineteen Years, This Man Has Dedicated His Work To The Study Of Our Solar System

Dr. Franck Marchis is a senior planetary astronomer and chair of the exoplanet group at the Carl Sagan Center of the SETI Institute and Chief Scientific Officer and Founder at Unistellar.

He began full-time work at the Institute in June 2011 after leaving a joint position with Institute and the department of astronomy at University of California, Berkeley.

Marchis moved to the United States in October 2000 shortly after getting a Ph.D. from the University of Toulouse in France that he acquired while traveling around the world for his research and for the sake of exploration.

Over the past nineteen years, he has dedicated his work to the study of our solar system, specifically the search for asteroids with moons, using mainly ground-based telescopes equipped with adaptive optics (AO).

More recently he has been also involved in the definition of new generation of AOs for 8 -10 m class telescopes and future Extremely Large Telescopes.

He has also developed algorithms to process and enhance the quality of astronomical and biological images.




He is currently the collaboration manager of the Gemini Planet Imager Exoplanet Survey, which consists in imaging and characterizing Jupiter-like exoplanets using an extreme AO system designed for the Gemini South telescope.

Today, Marchis dedicates most of his energy to instruments capable of imaging and characterizing Earth-like exoplanets by being involved in education, public outreach, technology, and scientific investigations related to those ambitious projects both in the United States and in Europe.

Marchis is also involved in startups related to astronomy so he joined Unistellar as a Chief Scientific Officer and VR2Planets as a scientific advisor in 2017.

Marchis is a member of numerous science committees including the SETI Science council, the GPI steering Committee, the TMT Science Definition Team, PLOS One editor board, the Project Blue and the PLANETS Foundation Advisory board.

He has co-authored more than 380 scientific publications, trained numerous students, and served as a science consultant and interviewee for numerous documentaries and movies in English, French, and Spanish.

The asteroid (6639) was named Marchis in honor of his discovery of the first triple-asteroid system in 2007. He has been an affiliated Astronomer at Observatoire de Paris since 2003.

Please like, share and tweet this article.

Pass it on: Popular Science

Jupiter’s Magnetic Field Has Weird Structure

Jupiter as seen from the Juno spacecraft.

Jupiter has the strongest magnetic field of any of the planets in the solar system. Like the field that shelters Earth, it’s essentially dipolar, which means it has a north pole and a south pole, like the field created by a bar magnetic.

A really, really big bar magnetic.

Earth’s magnetic field is produced by churning liquid iron in the planet’s outer core. Iron conducts electricity, and a changing electrical current creates a magnetic field.

So as the liquid iron cycles up and down, carrying heat from the planet’s center up to the mantle and then sinking again, it creates powerful electrical currents that in turn produce the planet’s global field.

But Jupiter doesn’t have an iron core. In fact, it’s unclear if it has a core at all — Juno’s observations suggest the core might be “fuzzy,” a concentration of rock and ice that has dissolved (or is still dissolving) into the surrounding hydrogen.

Instead, the source of the global field is the overlying mantle of metallic hydrogen, where hydrogen molecules trade electrons, creating currents. The planet’s rotation organizes the resulting magnetic field into a dipole.

Or, at least it kind of does. Reporting in the September 6th Nature, Kimberly Moore (Harvard) and colleagues have discovered a strange plume of magnetic field shooting up from a region in Jupiter’s northern hemisphere and reentering the planet at its equator.

And it’s three times stronger than the main dipole field.




Detecting the Invisible

As it flies around Jupiter, the Juno spacecraft measures the planet’s magnetic field using two instruments called fluxgate magnetometers.

At each magnetometer’s core lie two rings, made of a material that soaks up magnetic field. Think of it like a magnetic sponge. Like a sponge, the material can only hold so much before it saturates.

The scientists can magnetically “fill up” the rings by running current through wires coiled around them, first one direction, then the other, explains John Connerney (NASA Goddard Space Flight Center), who heads up Juno’s magnetometer investigations and is a coauthor on the new study.

But if there’s another magnetic field in the environment, the rings will soak it up, too.

That will reduce how much of the applied field the rings can absorb from the wires in one direction, but increase the amount absorbed from current flowing the other direction.

When the magnetometer cancels out this imbalance using another wire-wound structure around each of the rings, the instrument measures how strong the environmental field is based on how much current it takes to push the field in the rings back to zero.

The coils’ orientations give the external field’s direction. But the magnetometer only detects the magnetic field the spacecraft is flying through.

The researchers have to extrapolate from those measurements, using detailed calculations to map the field at the planet’s cloudtops and below.

Combining data from eight of Juno’s flybys, the scientists confirmed the existence of the bizarre magnetic feature, hints of which had shown up in an analysis last year from Juno’s first orbit.

The structure looks like a ponytail shooting out from the planet’s forehead and reentering through the nose, at a location the team is calling the Great Blue Spot (for its color in a map of the planet’s field).

There’s nothing like this ponytail in the southern hemisphere. Why does this magnetic ponytail exist? Scientists don’t know.

The team considers several ideas in their paper, the most likely being that there’s some sort of layering in the metallic hydrogen mantle that’s messing with the convection pattern.

Layering could naturally arise with a dissolving core: Rock and ice mixed in with hydrogen would raise the density, and if that mixing isn’t uniform, it could create layers of different density that could destabilize the cyclic convection patterns or spur different convection patterns in distinct layers.

Please like, share and tweet this article.

Pass it on: Popular Science

Blue Meteorite Crystals Reveal The Sun’s Wild Youth

A tiny hibonite crystal from the Murchison meteorite.

Ancient and rare blue crystals from the dawn of the solar system help confirm that the newborn sun was violently active, a new study reports.

Astronomers previously found that stars are typically incredibly energetic very early in their evolution. Scientists had suspected the same was true of the sun after it was born about 4.6 billion years ago.

The sun was very active in its early life — it had more eruptions and gave off a more intense stream of charged particles,” study co-author Philipp Heck, a curator at The Field Museum in Chicago, said in a statement.

“I think of my son — he’s three; he’s very active, too.”

However, proving this “early active sun hypothesis” is challenging because it is difficult to find material that recorded what the early sun was like and that also survived billions of years unscathed.+




Almost nothing in the solar system is old enough to really confirm the early sun’s activity,” Heck said in the statement.

To hunt for such evidence, the researchers analyzed samples from the Murchison meteorite, which crashed in 1969 near the town of Murchison, in the Australian state of Victoria.

This meteorite, which is kept at The Field Museum in Chicago, dates to the early solar system and is renowned in the scientific community for its abundance of organic molecules.

As the giant disk of gas and dust that surrounded the early sun cooled down about 4.5 billion years ago, the earliest minerals began to form — microscopic, ice-blue crystals named hibonites, the largest of which were only a few times the diameter of a human hair.

Lead author Levke Kööp at work in the lab.

They are likely among the first minerals that formed in the solar system,” study lead author Levke Kööp, a cosmochemist at the University of Chicago said.

If the early sun spewed out lots of energetic particles, some of these should have struck calcium and aluminum in the crystals, splitting those atoms into smaller atoms of neon and helium.

This evidence of an early active sun could have remained trapped unscathed within the crystals for billions of years and been incorporated into rocks that eventually fell to Earth for scientists to study.

The scientists analyzed the crystals using a state-of-the-art mass spectrometer in Switzerland — a garage-sized machine that can determine an object’s chemical makeup.

A tiny hibonite crystal from the Murchison meteorite.

A laser melted tiny grains of hibonite crystals, and the mass spectrometer then analyzed its contents.

The mass spectrometer was specifically designed to look for traces of noble gases, such as helium and neon. The researchers found a surprisingly large signal clearly showing the presence of helium and neon.

This may be the first concrete evidence of the sun’s long-suspected early activity, the researchers said.

Future research on ancient meteorite crystals might help reveal details about the protoplanetary disk of gas and dust around the sun that ultimately gave rise to the planets, such as how hot or cold different parts of this disk were.

Please like, share and tweet this article.

Pass it on: Popular Science