Tag: Solar System

Blue Meteorite Crystals Reveal The Sun’s Wild Youth

A tiny hibonite crystal from the Murchison meteorite.

Ancient and rare blue crystals from the dawn of the solar system help confirm that the newborn sun was violently active, a new study reports.

Astronomers previously found that stars are typically incredibly energetic very early in their evolution. Scientists had suspected the same was true of the sun after it was born about 4.6 billion years ago.

The sun was very active in its early life — it had more eruptions and gave off a more intense stream of charged particles,” study co-author Philipp Heck, a curator at The Field Museum in Chicago, said in a statement.

“I think of my son — he’s three; he’s very active, too.”

However, proving this “early active sun hypothesis” is challenging because it is difficult to find material that recorded what the early sun was like and that also survived billions of years unscathed.+




Almost nothing in the solar system is old enough to really confirm the early sun’s activity,” Heck said in the statement.

To hunt for such evidence, the researchers analyzed samples from the Murchison meteorite, which crashed in 1969 near the town of Murchison, in the Australian state of Victoria.

This meteorite, which is kept at The Field Museum in Chicago, dates to the early solar system and is renowned in the scientific community for its abundance of organic molecules.

As the giant disk of gas and dust that surrounded the early sun cooled down about 4.5 billion years ago, the earliest minerals began to form — microscopic, ice-blue crystals named hibonites, the largest of which were only a few times the diameter of a human hair.

Lead author Levke Kööp at work in the lab.

They are likely among the first minerals that formed in the solar system,” study lead author Levke Kööp, a cosmochemist at the University of Chicago said.

If the early sun spewed out lots of energetic particles, some of these should have struck calcium and aluminum in the crystals, splitting those atoms into smaller atoms of neon and helium.

This evidence of an early active sun could have remained trapped unscathed within the crystals for billions of years and been incorporated into rocks that eventually fell to Earth for scientists to study.

The scientists analyzed the crystals using a state-of-the-art mass spectrometer in Switzerland — a garage-sized machine that can determine an object’s chemical makeup.

A tiny hibonite crystal from the Murchison meteorite.

A laser melted tiny grains of hibonite crystals, and the mass spectrometer then analyzed its contents.

The mass spectrometer was specifically designed to look for traces of noble gases, such as helium and neon. The researchers found a surprisingly large signal clearly showing the presence of helium and neon.

This may be the first concrete evidence of the sun’s long-suspected early activity, the researchers said.

Future research on ancient meteorite crystals might help reveal details about the protoplanetary disk of gas and dust around the sun that ultimately gave rise to the planets, such as how hot or cold different parts of this disk were.

Please like, share and tweet this article.

Pass it on: Popular Science

Astronomers Have Found A New Crop Of Moons Around Jupiter, And One Of Them Is A Weirdo

Ten more moons have been confirmed to orbit around Jupiter, bringing the planet’s total known satellite count to 79.

That’s the highest number of moons of any planet in the Solar System. And these newly discovered space rocks are giving astronomers insight as to why the Jupiter system looks like it does today.

Astronomers at Carnegie Institution for Science first found these moons in March 2017, along with two others that were already confirmed in June of last year.

The team initially found all 12 moons using the Blanco 4-meter telescope in Chile, though finding these objects wasn’t their main goal.

Instead, they were searching for incredibly distant small objects — or even planets — that might be lurking in our Solar System beyond Pluto.

But as they searched for these fringe space rocks, they decided to take a peek at what might be lurking around Jupiter at the same time.




Now, the moons they found have been observed multiple times, and their exact orbits have been submitted for approval from the International Astronomical Union, which officially recognizes celestial bodies.

These moons are all pretty tiny, ranging between less than a mile and nearly two miles wide. And they break down into three different types. Two orbit closer to Jupiter, moving in the same direction that the planet spins.

Farther out from those, about 15.5 million miles from the planet, there are nine that revolve in the opposite direction, moving against Jupiter’s rotation.

But in this same distant region, one strange moon that astronomers are calling Valetudo is moving with Jupiter’s spin, like the two inner moons.

That means it’s going in the opposite direction of all the other moons in the same area. “It’s basically driving down the highway in the wrong direction,” Scott Sheppard, an astronomer at Carnegie who led the discovery team said.

That’s a very unstable situation. Head-on collisions are likely to happen in that situation.

Valetudo isn’t the only moon of Jupiter that acts this way. Another moon called Carpo also orbits far out from Jupiter, moving in the opposite direction of many other moons in the area.

The small dot between the yellow lines in these photographs is the newly discovered moon Valetudo.

However, Valetudo orbits much farther away than Carpo, and it may actually be the smallest moon Jupiter has.

Now with this discovery, astronomers think it’s good evidence that moon-on-moon collisions have happened in Jupiter’s past, and these are responsible for the lunar landscape around the planet today.

Valetudo, at just 1 kilometer across, is probably the last remnant of a much larger moon that’s been ground down into dust over time,” says Sheppard.

Finding moons around Jupiter can be tough. As the biggest planet in our Solar System, it has a very large area of influence, so there’s a lot of space where moons could potentially be.

It’s difficult to search that area in a timely manner with a telescope. “It’s like looking through a straw, and you’re just covering as many points around Jupiter as you can looking for these things,” says Sheppard.

And since Jupiter is so large, it reflects a whole lot of light. That means there can be a lot of glare when searching for super faint moons around the planet.

Please like, share and tweet this article.

Pass it on: Popular Science

A Brief History Of The Future

The history of the universe is mind-blowing. But the future of the universe – and how it ends – is even more so.

From the end of the human race to the fate of planet Earth, the solar system, the Milky Way, and beyond, in today’s video, we talk about the far, far future and what it holds for everything.

Pluto May Have Formed From 1 Billion Comets

At its heart, Pluto may be a gigantic comet.

Researchers have come up with a new theory about the dwarf planet’s origins after taking a close look at Sputnik Planitia, the vast nitrogen-ice glacier that constitutes the left lobe of Pluto’s famous “heart” feature.

The European Space Agency’s Rosetta mission orbited Comet 67P/Churyumov-Gerasimenko from 2014 through 2016.

The orbiting mothership also dropped a lander named Philae onto the icy body, pulling off the first-ever soft touchdown on a comet’s surface.

Glein and his SwRI colleague Hunter Waite devised the new Pluto-formation scenario after analyzing data from Rosetta and NASA’s New Horizons mission, which flew by Pluto in July 2015.

The scientists also made some inferences about the dwarf planet’s evolution in their new study, which was published online Wednesday (May 23) in the journal Icarus.




Our research suggests that Pluto’s initial chemical makeup, inherited from cometary building blocks, was chemically modified by liquid water, perhaps even in a subsurface ocean,” Glein said.

Glein and Waite aren’t claiming to have nailed down Pluto’s origin definitively; a “solar model,” in which the dwarf planet coalesced from cold ices with a chemical composition closer to that of the sun, also remains in play, the duo said.

This research builds upon the fantastic successes of the New Horizons and Rosetta missions to expand our understanding of the origin and evolution of Pluto,” Glein said.

Using chemistry as a detective’s tool, we are able to trace certain features we see on Pluto today to formation processes from long ago,” he added.

This leads to a new appreciation of the richness of Pluto’s ‘life story,’ which we are only starting to grasp.”

Rosetta’s mission ended in September 2016, when the probe’s handlers steered it to an intentional crash-landing on 67P’s surface. New Horizons’ work, however, is far from done.

The NASA spacecraft is speeding toward a flyby of a small Kuiper Belt object known officially as 2014 MU69 (and unofficially as Ultima Thule).

This close encounter, which will occur on Jan. 1, 2019, about 1 billion miles beyond Pluto’s orbit, is the centerpiece of New Horizons’ extended mission.

Please like, share and tweet this article.

Pass it on: Popular Science

Weird Space Rock Provides More Evidence For Mysterious ‘Planet Nine’

The solar system just got a bit stranger. As astronomers continue their ongoing quest to find the elusive Planet Nine, a team found a space rock that lends credence to the idea that a huge super-Earth planet really exists in the outer reaches of our solar system.

The newfound asteroid, called 2015 BP519, adds to a growing body of evidence about little worlds in the solar system being perturbed by something big.

Astronomers detailed its discovery and description in a new paper, adding that the bizarre angle of its orbit gives more weight to the idea that a big planet is out there — somewhere — tugging on the asteroid’s path around the sun.

Following up on the discovery, Quanta Magazine recently published an article surveying several astrophysicists who specialize in studying small worlds, including the discoverers of 2015 BP519.

While not everybody agreed that Planet Nine was responsible for the strange orbit, the overwhelming majority agreed the new discovery gives more credence to the idea.




The second you put Planet Nine in the simulations, not only can you form objects like this object, but you absolutely do,” lead author Juliette Becker, a graduate student at the University of Michigan, told Quanta.

It’s not the first time Planet Nine was blamed for pushing an object around.

Back in 2014, before Planet Nine was officially hypothesized, astronomers Scott Sheppard and Chadwick Trujillo noticed orbital irregularities in several small bodies beyond Neptune’s orbit.

These included dwarf planet Sedna, a newfound object called 2012 VP113, and several other trans-Neptunian objects (TNOs).

Then, in January 2016, astronomers Konstantin Batygin and Mike Brown saw more evidence of TNOs with perturbed orbits.

They were the ones who first gave “Planet Nine” a name, size and distance. They suggested that the mysterious planet could be 10 times more massive than Earth, located 600 astronomical units (AU) from the sun.

A flood of studies followed about TNOs and how Planet Nine might have affected their orbits; the following summary is just a sampling.

Not all teams were enthusiastic, with one group from the Outer Solar System Origins Survey (OSSOS) cautioning that many of these surveys could be just observational bias.

But astronomers persisted, with Sheppard and Trujillo discovering at least two new TNOs possibly affected by Planet Nine. Another study showed Planet Nine perhaps influenced the tilt of planets in our solar system.

And in 2017, astronomers from the University of Madrid in Spain found peculiarities in the orbits of 22 “extreme” TNOs that orbit the sun that could also be explained by a large, distant body exerting gravitational influence.

By October 2017, Batygin said, there were at least five different lines of evidence that suggest the existence of the planet.

“If you were to remove this explanation and imagine Planet Nine does not exist, then you generate more problems than you solve. All of a sudden, you have five different puzzles, and you must come up with five different theories to explain them,” he said in a statement.

Please like, share and tweet this article.

Pass it on: Popular Science

‘Diamonds From The Sky’ Approach Turns CO2 Into Valuable Products

Finding a technology to shift carbon dioxide (CO2), the most abundant anthropogenic greenhouse gas, from a climate change problem to a valuable commodity has long been a dream of many scientists and government officials.

Now, a team of chemists says they have developed a technology to economically convert atmospheric COdirectly into highly valued carbon nanofibers for industrial and consumer products.

The team will present brand-new research on this new CO2 capture and utilization technology at the 250th National Meeting & Exposition of the American Chemical Society (ACS). ACS is the world’s largest scientific society.

The national meeting, which takes place here through Thursday, features more than 9,000 presentations on a wide range of science topics.




We have found a way to use atmospheric CO2 to produce high-yield carbon nanofibers,” says Stuart Licht, Ph.D., who leads a research team at George Washington University.

“Such nanofibers are used to make strong carbon composites, such as those used in the Boeing Dreamliner, as well as in high-end sports equipment, wind turbine blades and a host of other products.”

Previously, the researchers had made fertilizer and cement without emitting CO2, which they reported.

Now, the team, which includes postdoctoral fellow Jiawen Ren, Ph.D., and graduate student Jessica Stuart, says their research could shift CO2from a global-warming problem to a feed stock for the manufacture of in-demand carbon nanofibers.

Licht calls his approach “diamonds from the sky.”

That refers to carbon being the material that diamonds are made of, and also hints at the high value of the products, such as the carbon nanofibers that can be made from atmospheric carbon and oxygen.

Because of its efficiency, this low-energy process can be run using only a few volts of electricity, sunlight and a whole lot of carbon dioxide.

At its root, the system uses electrolytic syntheses to make the nanofibers.

Please like, share and tweet this article.

Pass it on: Popular Science

Saturn’s Moon Wears The Weirdest Mountain Range In The Solar System

photo by Cassini Imaging Team/SSI/NASA/JPL/ESA

SallOf all the moons in the solar system, Iapetus has to be among the weirdest. Named after a spear-wielding Titan, the strange Saturnian satellite is less than half the size of Earth’s moon.

But it’s a cluster of enigmas: Squished at its poles, the moon is walnut-shaped, has a face as black as coal and a bright white backside, and wears a big, spiky mountain range as a belt.

Even its orbit is weird: Iapetus is roughly three times farther from Saturn than its closest neighbor, Titan.

And the path it takes around the planet is tilted, meaning it swings up and down as it orbits, rather than staying in the plane of Saturn’s rings like the rest of the “normal” satellites.

In other words, it’s kind of like the rebel of the Saturnian system, a moon who’d prefer to hang out behind the dumpster and cut class rather than play ball with the other kids.




Among the strangest of Iapetus’ unsolved mysteries is its super-chic, spiky mountain range.

Running straight as an arrow along three-quarters of the moon’s equator, the thing is huge: Roughly 20 kilometers tall and up to 200 kilometers wide.

There’s nothing else like it in the solar system.

Scientists first spotted the ridge in 2004, and since then, they’ve been trying to figure out how such a thing formed.

Early theories suggested geologic activity within the moon itself – maybe something akin to Earth’s plate tectonics or volcanism had forced the ridge to rise up along the equator.

But that didn’t make a lot of sense. The moon’s crust wasn’t spongy when the ridge formed, the evidence for active geology tepid.

Then, scientists thought maybe the ridge had formed as a result of the moon’s rotation period abruptly slowing down. Some early simulations suggest a day on the moon used to last for a mere 16 hours.

Now, though, a day on Iapetus lasts 79 Earth-days – the same amount of time it takes the little guy to shuffle once around Saturn.

photo by Cassini Imaging Team/SSI/NASA/JPL/ESA

Maybe, teams said, a giant impact had knocked Iapetus into its current rotation state, and the resulting braking action caused the crust to buckle.

But most of these theories also predict other strange geologic features (which aren’t observed), or hinge upon the crust being a certain thickness.

As the moonlet broke up, Dombard said, its pieces formed an ephemeral ring around Iapetus’ equator. The ring eventually rained down upon the satellite and deposited the giant ridge.

In 2011, another team suggested something similar, this time with a giant impact forming both a ring and a moonlet.

The ring would go on to form the mountain range, while the moonlet would smash into Iapetus and create one of its many large impact basins.

Recent evidence, gleaned from the shape of the mountain ridge itself (steep and triangular), suggests that pieces falling from on high could make total sense.

It’s kind of the same shape you get when you take a handful of sand and slowly sprinkle it into a pile. Why the ridge only runs along three-quarters of the equator isn’t explained by this scenario, though.

In short, we still don’t know how Iapetus grew its monstrous mountains. But the idea of a moon with a moon, or a moon with a ring, is strangely compelling. Too bad Iapetus had to go and tear its little friend to bits.

Please like, share and tweet this article.

Pass it on: New Scientist

NASA’s New Horizons Spacecraft Snaps Image From 3.8 Billion Miles Away From Earth

At first glance it might not look like much – but, with a fuzzy purple and green photo, NASA’s New Horizons spacecraft has made history.

On December 5, New Horizons captured an image said to be the farthest from Earth ever taken, at a staggering 3.79 billion miles away.

And, just hours later, it beat its own record.

According to NASA, the remarkable false-color images sent back by New Horizons are also the closest-ever images captured of objects in the Kuiper Belt.

When New Horizon’s snapped a photo with its telescopic camera for a routine calibration frame of the Wishing Well star cluster, it was farther into space than even NASA’s Voyager 1 had been when it captured its famous ‘Pale Blue Dot’ image of Earth, the space agency says.

At the time, New Horizons was 3.79 billion miles (6.12 billion kilometers) from Earth.


Voyager, by comparison, was 3.75 billion miles (6.06 billion kilometers) from Earth when it captured its famous photo in 1990.

According to NASA, New Horizons is now the fifth spacecraft to fly beyond the outer planets of our solar system.

Hours after its first record-breaking image on Dec 5, it captured another. The latter shows a look at Kuiper Belt objects HZ84 and 2012 HE85.

The images were captured using the spacecraft’s Long Range Reconnaissance Imager (LORRI). And, NASA says they’re the closest images yet of objects in this region.

New Horizons has long been a mission of firsts – first to explore Pluto, first to explore the Kuiper Belt, fastest spacecraft ever launched,” said New Horizons Principal Investigator Alan Stern, of the Southwest Research Institute in Boulder, Colorado.

“And now, we’ve been able to make images farther from Earth than any spacecraft in history.”

New Horizons is now on its way to a KBO named 2014 MU69, with which it’s expected to make a close encounter on Jan 1, 2019.

Please like, share ans tweet this article.

Pass it on: New Scientist

NASA’s Mars Reconnaissance Orbiter And ESA’s Venus Express Are Using Atmosphere To Get Closer To The Planet

Mars has historically been unfriendly to Earth’s attempts to visit it. More missions have been attempted to Mars than to any other place in the Solar System except the Moon, and about half of the attempts have failed.

Some of these failures occurred because Mars was the first planet Earth attempted to explore, and the early exploration attempts taught us many lessons that have made subsequent missions more successful.

But many failures have occurred relatively recently, proving again and again that space exploration is very, very difficult.

But since 1996, Mars exploration has undergone a Renaissance, with data from four orbiters and four landed missions developing a revolutionary new view of Mars as an Earth-like world with a complex geologic history.




ExoMars Trace Gas Orbiter

This first mission of ESA’s ExoMars program consists of a Trace Gas Orbiter plus an Entry, descent and landing Demonstrator Module, known as Schiaparelli (which transmitted data during its descent before crash landing on the martian surface).

The main objectives of this mission are to search for evidence of methane and other trace atmospheric gases that could be signatures of active biological or geological processes and to test key technologies in preparation for ESA’s contribution to subsequent missions to Mars.

Mars Reconnaissance Orbiter

The Mars Reconnaissance Orbiter is searching for evidence of past water on Mars, using the most powerful camera and spectrometer ever sent to Mars.

Its cameras are also helping in the search for landing sites for future Mars rovers and landers, and to monitor martian weather on a day-to-day basis.

Please like, share and tweet this article.

Pass it on: Popular Science

NASA Just Found Our Solar System’s Twin By Using Artificial Intelligent

Searching the stars for unique phenomena is not an easy process.

The problem is that space is simply too big, too diverse, and too wonderful.

Locating a specific kind of anomaly among the many wondrous sights scattered throughout the cosmos is near impossible for humans, without easily-distracted brains.

With so many stars to check, the process of scanning the galaxy to find planets like our own can take a lot of time and effort.

Thankfully, artificial intelligence can help us in the process of spotting distant stars and their neighboring planets.

NASA has announced that, thanks to an AI program that was given the task of spotting cool stuff in space, the agency has been able to find a solar system that looks uncannily like our own; albeit in miniature form.




The Kepler-90 system exists a distant 2,545 light years from Earth, but has drawn attention from the astrological society after an AI noted that its series of eight planets match up well with our own.

The primary difference is that its planets orbit a lot closer to the sun than those in our solar system, with the newly discovered Kepler-90i making a full rotation around the star in a matter of just fourteen Earth days.

In order to locate Kepler-90’s planets NASA’s AI had to scan through a daunting thirty five thousand potential signals from distant stars, over a period of four years.

This is where machine learning was able to come into play to help make the process easier—the AI was fed data from around fifteen thousand signals that NASA had previously investigated.

So the AI had a pretty good idea of what it was looking for based on the kinds of readings that NASA had flagged as noteworthy among the program’s database of reference materials.

From there, it was a simple matter of letting the AI run checks for all potential star systems against its database until the program found something that matched what it was looking for, which happened to be a bunch of newly discovered planets orbiting Kepler-90.

Kepler-90 isn’t actually the most exciting solar system in the galaxy—it’s unlikely that its super hot worlds will bear life, or even any noteworthy new discoveries.

What is special, is the fact that an AI managed to identify Kepler-90 as fitting the right parameters for investigation.

This shows that there really are benefits to employing machine learning as a technique for searching the cosmos for interesting research subjects without the need for a human to slog through thousands of signals in order to find a few interesting stars that warrant a closer look.

Essentially, NASA is building a self-teaching search engine that can trawl through all of our records of the stars to find things that look interesting, based only on a vague description of what scientists are looking for.

The future of space exploration is going to be a whole lot easier if we can trust an artificial intelligence to do all the boring stuff for us.

Please like, share and tweet this article.

Pass it on: New Scientist