5 Times Nature Got REAL Creative With Penises | Answers With Joe

Nature has had billions of years to experiment with reproduction, and it’s come up with some pretty bizarre ways to mix genes. While it’s a little taboo, here’s some of the weirdest solutions that have evolved over the years. Ladies and gentlemen, the weirdest penises in nature.


Coyotes are native to North America and play an important part of the ecosystem. They’re very social animals that travel in packs and have a highly advanced communication system. And they also have a (gesture) BIG, LONG… history of intermingling with wolves.

Maybe it’s this inter-species scootelypooping that’s the reason that coyotes, though smaller than wolves have a (gesture) MASSIVE impact on the environment.

This video is not about coyotes, but longtime viewers know what I’m referencing here.

Yes, in the video where I celebrated a million subs on this channel, my team of clones recommended a few video ideas…

We’ve already done a video on one of those topics well, here’s another. (beat) Sort-of.

(play clip where I say, “Is there enough about coyote penises to make a video,” and then “you have no idea”)

Turns out no, there’s not.

Not about coyote penises specifically but penises in general… Now that’s a subject that goes DEEP.

Because sexual reproduction is how we all got here. The mixing of genes has been essential for genetic diversity and evolution, and nature has spent billions of years exploring different ways of doing that.

So today let’s take a look at the various methods nature has used to insert tab A into slot B. This… could get weird.

By the way, it probably goes without saying but to all of you who send me emails saying you like to watch my videos with your kids… Maybe sit this one out. (beat) Or don’t. They’re your kids, mess them up however you want.

Let’s start by stepping WAY back and getting a handle on the fundamentals of sexual reproduction so we can understand how it got so weird.

In sexual reproduction, a haploid female gamete (egg cell) fuses with a haploid male gamete (sperm cell).

The fusion creates a diploid zygote. Diploid means the chromosomes are paired.

All this creates an organism that is genetically distinct from the parent organisms.

On the other hand, asexual reproduction doesn’t involve gametes, and the offspring is a clone of a parent. Which is probably simpler.

So why does nature go through so much trouble for this? Or maybe a better way to put it is to say why has this method of reproduction been so successful despite all the extra energy it requires.

One advantage is that it helps ensure a particular species’ chromosome number remains the same across generations.

And another advantage is that it increases genetic variation and expands the gene pool, which allows the species to adapt and evolve over time.

There are two types of sexual reproduction:
– Syngamy – internal or external fusion of haploid sex cells; most common type of reproduction in multicellular sexual populations
– Conjugation – temporary fusion to exchange micronuclear material; often seen in single-cell organisms

Eukaryotes were the first organisms to engage in asexual reproduction around two billion years ago.
(on screen: Eukaryotes are single-celled or multicellular organisms whose cell includes a distinct, membrane-bound nucleus.)

Internal fertilization among vertebrates is much more recent on the evolutionary timescale.


Gotta start with the ducks.

So first of all most bird species don’t have penises at all. Both sexes have a cloaca and when one bird loves another bird very much, the male will rub his cloaca against the female’s cloaca and pass sperm from his cloaca to hers.

Heterosexual scissors, if you will.

But ducks don’t do scissors. They use a different kitchen utensil. Corkscrews.

When ducks mate, they bond for a whole mating season, but rival males will often violently force themselves onto females.

Don’t know if I need a trigger warning here but yeah… Nature can be a little rapey.

So over evolutionary time, female ducks developed elaborate vaginas with dead-end cul-de-sacs and spirals.

Consequently the male ducks developed weird, corkscrew penises with ridges and backward-point spines that help them deposit sperm further into a female than a rival.

So if you say two ducks are screwing, that is a quite literal statement.

And as if male duck d*cks weren’t weird enough, turns out they are both growers and showers.

Male ducks can respond to sexual competition by growing an extra-long penis or a nub of flesh on the end of their penis.

According to a study by Patricia Brennan of Mount Holyoke College, when a male is alone with a female it would grow a normal-sized penis.

But if other males were around, they grew larger penises so they could show females that they could deposit sperm further inside her.
(Caption under name: assistant professor of biological sciences, Mount Holyoke College, Massachusetts )
(Source: The Auk: Ornithological Advances, 2017)

“So evolution must be acting on the ability to be plastic—the ability to invest only in what is needed in your current circumstance,” Brennan told Scientific American in 2017.

And the current circumstance of ducks apparently requires a giant corkscrew penis.

Sea Slug

Something that stands out when looking at the world of sexual reproduction in nature is that it’s not just about depositing sperm, it’s about keeping other creatures’ sperm out.

Ducks managed this with corkscrews, sea slugs have a different strategy.

The Chromodoris reticulata is a type of sea slug found in the Pacific Ocean.

Researchers believe it may be the first creature known that can have sex repeatedly with a disposable penis. No, it’s not just a great King Missile song.

Sea slugs are also known as nudibranchs and are believed to be “simultaneous hermaphrodites.”

In other words, they have both female and male organs they can use at the same time. So when two sea slugs mate, the penis from one slug fits into the female opening of the other slug, and vice versa. So they can essentially impregnate each other.

I wonder what the abortion issue would look like if that were true for us…?

But anyway, Japanese researchers noticed something interesting and published their findings in Biology Letters in 2013.

They watched the slugs mate 31 times. After the… (stare into space) I’m sorry, I just had so many jokes go through my head I disassociated.

That was somebody’s job. To watch the two horniest sea slugs alive just rail each other over and over and over and over and over…

I don’t care how bad your job is, that guy’s job is worse.

And apparently while watching these two nymphomaniacs going at it, he noticed that after each act, they shed their penises. Just snapped them right off in each other. Then he wrote a report about it. Went home to his spouse.

Spouse (cutting up food on the plate): So, how was work today?

Researcher (dazed with a drink in hand): I watched two sea slugs f*ck 31 times.

Spouse (unfazed): Yeah, how’d that go?

Researcher: They snapped their d*cks off up there.

Obviously, to do that 31 times means they need to be able to regrow it, which they did, within 24 hours. In fact, they could mate three times in succession with each act separated by about 24 hours.

And the slugs’ penises also had backward-pointed spines on them, so the prevailing theory is that during the first act the penis may be used to remove sperm left by competitors.

The second penis is used then to inject the slug with another dose of its own sperm. This helps ensure their genes are passed on.

As for the other 29 times… Well, slugs are sluts.


From animals that lose their penis to animals that just… become the penis.

The male anglerfish has one goal: To attach itself to a female anglerfish and remain with her for the rest of his life.

But this isn’t some romantic movie where the characters make out in the rain as the credits roll, this is a love story written by David Cronenberg.

Go figure this fish would have the creepiest sex imaginable.

So what happens with the anglerfish, is that when the male finds a female he likes, he approaches her, says hi, and then like… bites into her side. Forever.

He basically attaches himself to her and over time his circulatory system merges with hers, he basically fuses with her and then his eyes, fins, and almost all his internal organs degenerate.

What’s left is a sexual parasite that provides sperm for the female whenever she demands. He’s basically just a sperm pump.

Female anglerfish are significantly larger than their male counterparts, and a female can collect up to eight males fused to her body.

Males! Collect them all!

So yeah, this is super weird but of course there’s a reason for this, and that reason is food.

At the depths these fish are swimming in, food is scarce. So this helps not only guarantee a mate for life, but also helps half the resources needed to survive.

It should be noted not all anglerfish do this, there are around 300 anglerfish species, but only about 25 species do it this way.

By the way, this is called “sexual parasitism.” They’re literal sexual parasites.

Again… So many jokes…


Eels had a moment in the last year or two in the “weird science” circles. Which is a thing I just made up.

There were a lot of social media posts and videos going around about how nobody really knows how eels reproduce.

Because we’ve never seen them do it. And they don’t seem to have any genitalia.

That of course is not true, scientists do know how they do it and they do have genitalia, you just have to dissect them to find it.

But that doesn’t change the fact that it is still very, very weird.

First of all, they have a complicated life cycle, starting as larvae drifting in the Sargasso Sea, which is in the middle of the Atlantic Ocean.

The larvae look like transparent willow leaves, and they travel along ocean currents. The American eel drifts westward, and the European eel drifts eastward.

By the way we have no idea how they know which way to drift. But they apparently just do.

When they reach land, they become glass eels. And then they do something that very few animals can do, they move into freshwater, and become freshwater eels. Which are known as yellow eels.

These are the eels most people eat, by the way.

And then these yellow eels live like this for a REALLY long time, up to 85 years. Assuming it doesn’t get eaten.

But whenever an eel decides it’s the end of its life, it goes through a fourth transformation and turn into silver eels.

By the way, this is why it was so hard to figure out how they reproduced because for a long time, they thought these were 4 separate species.

So it becomes a silver eel and swims back out to the Sargasso Sea, where they started from. This can take up to a year, and their bodies continue to change along the way.

They don’t eat for the whole journey, in fact their stomachs dissolve, its eyes change and it develops sexual organs.

So after living up to 85 years, they finally become sexually mature. And by the way, if they don’t swim out to the Sargasso Sea, this doesn’t happen. They can live almost indefinitely in the yellow eel stage.

Maybe that’s the key to immortality, just don’t grow sex organs.

But why the Sargasso Sea? What’s so great about that spot? And how do they even know how to get there? (beat) No, seriously, I’m asking, nobody seems to know.

Some theories include water temperature and salinity for why they go there, and scent and electromagnetic fields for how.

Also, an eel’s sex is determined by its environment and not genetics. It is neither female nor male when it hatches.

Anyway once they reach the Sargasso Sea, that’s where they mate and lay eggs, its believed they reproduce externally with clouds of sperm fertilizing free-floating eggs. But… It’s never actually been seen. It is still a bit of a mystery.

My bet is that it would be weirder than that because of course it would be.

This is a short list. There are so many other animal penises we could have explored. Some of these include the
– Echidna, with its four-head penis
– Dolphin, with its penis that can grab, grope, and swivel like a human hand
– Barnacle, whose penis is nearly eight-times its body length, which it uses to reach out to nearby mates
– Insects of the Neotrogla genus, where the males have a vagina-like pouch with sperm, and the females have a penis-like organ that penetrates the male and collects the sperm
– And the argonaut octopus, a cephalopod whose penis detaches itself from the creature’s body and swims around looking for a lady.

But of course a cephalopod would be on this list because they are some of the weirdest creatures on the planet which is why I made a whole video on them which is the pinnacle of science entertainment that is so important to the history of humanity that it should have been imprinted in the Voyager golden record… wait did Jason write this one? Ah, he got me. He got me again. Little scamp.

But anyway, sexual reproduction comes down basically to taking genetic material from a male and a female and mixing them up. And as we’ve seen, there’s no one way to do it.

No matter how kinky you think you are, nobody’s as creative in the sex department than nature.






Iron-Air Batteries: Storing Energy In Rust

Grid energy storage is one of the hottest areas of research and engineering today. It’s all about cheap, sustainable, and efficient materials, which makes iron-air batteries stand out amongst the others. Not only is iron plentiful and cheap, it’s completely recyclable and even better – rechargeable. Let’s look at iron-air battery technology and see how likely it is to transform our energy grid.


Over the last couple of years I’ve had something of a series of videos on this channel covering various types of battery technology. It’s not a formal thing exactly, but it’s a popular subject and there seems to be new ones all the time so there’s no shortage of topics.

I’ve covered liquid metal batteries, solid state batteries, redox flow, lithium ion of course, and most recently aluminum air and with each and every one of these videos, just as I was finishing up, Matt Freaking Farrell posts a video on the same topic.

So of course as I was working on a video about Iron Air batteries, there’s one from him, just cutting in line.

But as they say, it’s not who did it first… it’s who did it best. (beat) Of course his graphics are way better than mine so I’m still screwed.

The point is, if you’ve seen Matt’s video… I don’t know, I guess you can skip this one – unless, you just want to see what I might do differently, in which case you’re in luck because I am going to have puppies up on screen. (puppies on screen; smug) Take that, Matt. Check and mate.

And if you haven’t seen Matt’s video, then get ready to learn something… And look at puppies.

I had no idea in October when I made that video about Oxygen that the stuff I talked about in that would be relevant in so many other videos. It was called Oxygen is Killing You and it was about how oxygen is one of the most corrosive elements on the periodic table but weirdly, even paradoxically, that corrosiveness is what makes life possible.

And it’s what makes a lot of things possible, when it comes down to it, pretty much everything is transformed or powered by combustion; or oxidation.

As I covered in the aluminum air battery video, oxygen reacts with aluminum to create aluminum hydroxide. Which by the way, fun fact, whenever you look at anything aluminum, you’re really seeing the thin outer layer of aluminum hydroxide. You’ve probably never actually seen aluminum in your life.

Well it works the same way with iron. Oxygen reacts with iron to form iron oxide, also known as rust. And this process gives off a little bit of energy.

But before we get too far into how the batteries work and everything… I feel like at the beginning of every video I have to explain why we need battery storage, how important energy storage is for renewable energy and all that, but there might be another way of looking at it…

The Battery Bottleneck

The reason we talk about all these different kinds of energy storage is because there are a lot of different use cases, and different batteries are better suited for different purposes.

Lithium-ion is great for EVs because they’re energy dense, so smaller batteries, better for mobility, can be cycled thousands of times, and provide a lot of power to make the zoom-zooms.

They’re great for home storage and grid storage, too, but every battery that goes into that is a battery that’s not going in a car.

And that’s a lot of batteries. Home energy storage was a $6.97 billion dollar market in 2020. And grid storage systems are expected to grow 10-fold between 2019 and 2023.

This is a problem. Because battery availability is the biggest hinderance to the growth of EVs.

Not only are there just not enough batteries to meet demand for EVs these days but it’s this scarcity that keeps the cost of the batteries – and EVs – higher than gas cars.

In fact, some industry experts are warning that demand for lithium ion batteries may soon exceed supply.

Europe has been experiencing a major shortfall this last year, because most of their batteries are coming from Asia, and Covid has wreaked havoc on global trade.

There are new plants coming online in Europe to address this, and that’s obviously a good thing but there is still the deeper problem of raw materials.

Expensive Materials

Most lithium ion batteries rely on expensive materials like lithium, nickel, and cobalt. All of which have to be mined, and in a relatively small number of places on Earth.

And these prices can fluctuate. Lithium has actually tripled this year, which has added about $470 to the cost of every EV, on average.

The point is, lithium ion, for all its great properties, is constrained. And if we want to advance car electrification going forward, it might make sense to find alternative solutions for all those non-mobile storage needs. So we can put lithium ion in the cars and phones and computers to live its best life.

And that is why we keep hearing about all these new battery technologies, everybody’s scrambling to come up with the cheapest, most sustainable option until we finally develop an arc reactor. In a cave. With a box of scraps.

A LiOn Alternative

Now that I’ve said the thing; the thing I say in all these videos… again… Let’s talk about iron air batteries.

How It Works

So, much like the Aluminum-Air Battery I covered about a week after Matt Ferrell, iron-air batteries fall into the category of metal-air batteries, where energy is stored and released through the oxidation of metal.

With metal-air batteries, the anode is the metal and the cathode is oxygen basically.

And the electrolyte of course is a solution of water with stuff dissolved in it to improve conductivity.

As I said before, iron plus water and oxygen equals iron oxide, or rust. and this chemical reaction — rusting — releases electrons to pass through a circuit as current
All this is pretty similar to what we talked about with aluminum, the difference with iron is that this rusting process is reversible. In other words… you can recharge this one.

Yeah, sounds like magic but you can “unrust” the iron by adding current from outside.
And because you can recharge it, it’s made from abundant materials, and it’s totally recyclable, it was considered a potential battery for electric vehicles back in the 70’s and 80’s.

In fact, iron has a theoretical energy density about twice that of lithium ion batteries. So… Why aren’t we seeing them everywhere now?

Short Cycle Life

There’s a few reasons, the first is cycle life.

So yeah, while we’re clapping and celebrating that they’re rechargeable, it’s important to know… They’re kinda just barely rechargeable.

Cycle life refers to the number of times a battery can be charged and discharged before it gives out less energy than was put in.

For example, nickel- and lithium-based batteries can be recharged 300 to 500 times before losing any significant capacity.
Significant, meaning twenty-percent less than a fresh battery. It can go thousands of cycles before it’s totally dead.
this cites 2000 cycles as a typical cycle life; I think that’s to DEAD

Early iron-air batteries could only do 20-30 cycles. That’s less.

Later models improved on that, but it was still way short of other competing batteries, so, it faded away.

Why do iron-air batteries have such short cycle lives? Well I’m glad you asked, with most metal-air batteries, the problem is the components deteriorate.

I mean all that oxidizing and un-oxidizing and re-oxidizing takes its toll after a while.

In the case of iron-air, the iron anode can theoretically last upwards of 10,000 cycles. That’s not the problem. It’s the cathode and the electrolyte.

There’s a membrane on the cathode that regulates air flow. That membrane can react with the electrolyte, causing contamination that decreases cycle life.

Corrosion can cause the battery to self-discharge. So instead of storing energy, the battery bleeds it away while sitting idle. Obviously a problem.

So, those are the kind of problems that have stymied interest in iron-air but there has been a lot of progress made since then.

Recent Innovations

Like less reactive materials for the cathode membrane, and more efficient electrolyte solutions.

And now nanotechnology is getting in on the action.

Anodes of iron nanoparticles have more surface area to carry out reactions.

Nanocomposites of iron and graphene or carbon fiber gives even better results

The company that’s making the most waves in Iron-air batteries is Form Energy, and they have plans to launch a grid-scale iron-air battery in the next few years.

They claim to have solved all the aforementioned problems but they’re keep the details of how they’re doing it a secret.

And I guess we’re just supposed to trust them. As if Nikola Motors and Theranos never existed.

Form Energy

But clearly somebody trusts them because they’ve raised $360 million in investment rounds.

Two of those somebodies being Bill Gates and Jeff Bezos.

So either they really are sitting on some secret sauce that will fix all the problems, or the potential for an Iron Air battery that can compete with Lithium Ion is just that enticing.

It doesn’t hurt that one of their founders is the former Vice President of Products and Programs at Tesla focusing specifically on grid-scale storage.

And they’ve also got on board a Professor of Materials Science and Engineering at MIT who was an innovator of lithium-ion technology back in the day.

In fact, the words “Tesla” and “MIT” pop up a lot in bios of Form executives. Like, this is kind-of the grid energy storage dream team.

And this dream team claims their new battery could be a major step toward a 100% renewable energy grid.

Do you want Bill Gates money? Because that’s how you get Bill Gates money.

An Economical Battery

The individual batteries are made from 10-20 iron-air cells that are stacked to form a battery about the size of a washing machine.

And its anode is the largest ever made, which actually speaks to the economy of the design because despite it using more metal, it’s expected to run at less than a tenth the energy cost of a comparable lithium-ion battery.
This is, of course just based off their claims, as I mentioned, Form is keeping some details to themselves

But it won’t be long before we know if it’s all it’s cracked up to be, there’s actually a pilot program going online in 2023 in Cambridge, Minnesota.

The Pilot Project

It’s called the Cambridge Energy Storage Project and is part of a Green-power makeover by Great River Energy.

Great River plans to QUOTE eliminate coal from its power supply portfolio and add 1,100 megawatts (MWs) of wind energy by 2023 UNQUOTE

1 MegaWatt will be from the Cambridge Project, maybe with more to come

Great River hopes that the project can help prevent extended blackouts, which have been a problem in the past.

A blackout caused by the polar vortex left people without power for up to 72 hours in 2019.

Another blackout kept some without power for 48 hours in 2003. This one caused by a software bug.
On a personal note, I’m actually getting solar and storage on my house right now because of the blackouts we had here in Texas last February. I knew people who were burning their furniture in the fireplace for warmth. But at least they survived, at least 151 people died.

Now some might say that’s all the more reason to not ditch coal and oil, if people are already dying for lack of electricity.

But form hopes their battery could change the conversation by helping secure the grid. We’ll know more when the pilot project kicks off.

What should we expect when it does?

Watts Per Hour

Form makes rather modest claims about the rate at which their batteries can power the grid

The pilot facility will use an acre of land to provide 1 MW/150 MWh of energy
Watts are a measure of how much work can be done, while watt-hours measure work over time

So Form is saying their acre of their batteries will deliver 1 MW to the grid. At a steady 1 MW per hour, they’ll be able to keep this up for 150 hours.

A denser configuration could deliver three times the energy with the same footprint

For comparison, Tesla’s Megapack can deliver 250 MW/1GWh of energy per acre. 250 MegaWatts is enough to power 75,000 homes. Impressive.

But some easy math will show that at 250 MW per hour, an acre of Megapacks will run out in four hours.

Form’s Focus

At 1 MW/150 MWh, Form isn’t looking to power a major city during peak energy demand, their focus is delivering low-cost, long-duration energy.

A company blog post acknowledges that lithium-ion batteries “will meet the majority of future electricity demand”

They’re not looking to replace lithium-ion batteries completely, in fact, the best use of Form’s batteries might be as part of a hybrid system

In times of low energy demand, the iron-air part would provide inexpensive power.

When demand peaks, the lithium-ion batteries would kick in.

But in emergency situations, iron-air batteries could provide days of emergency power, which could save lives during extreme weather events.

So… is Iron Air the end-all, be-all of battery storage? No. But no single battery is.

Which, as I was saying at the beginning, is all the more reason to have a multitude of battery types that can fill specific niches in the most cost-effective and sustainable way possible.

It’s actually a really interesting time to be covering battery technology, and who knows, maybe someday we’ll develop the perfect battery that does all things in all applications. And when we do, I’ll cover it right here… Probably a week after Matt Ferrell.

Tell me your thoughts about the iron air battery and if there’s another battery storage solution that you’re excited about.











The Van Allen Belts Are Dangerous – But Didn’t Keep Us From The Moon | Answers With Joe

The Van Allen Belts are areas of high radiation where solar particles have been trapped and accelerated by the Earth’s magnetic field. This has long been touted as evidence by conspiracy theorists that we couldn’t have gotten to the moon. But while the Van Allen Belts are dangerous, the tenacity and genius of NASA engineers literally found a way around them. Here’s how.


I’m old enough to remember a time before the internet. In fact, that’s when I spent the most impressionable years of my life, I was molded before the internet as we know it changed the world as we know it.
So sometimes I find myself fascinated with Gen Z because these guys did grow up with the internet and were molded in a completely different world from me, with any information or entertainment they could ever want instantly available at all times.
And I worry about all the misinformation on the internet and what that does to someone who develops their worldview in a hurricane of clickbait and deepfakes and conspiracy theories.
Like you hope that someone who grows up in it might be more saavy to it because they’ve never known a time when you could just take information at face value, so they’re more aware of the manipulation and aren’t as taken by it.
Or… could growing up in a time of information chaos lead to a total abandonment of the very concept of truth? Where the loudest voices win?
You want it to be the first one… Until you hear that there’s a growing conspiracy theory amongst Gen Zers that birds aren’t real. And then you start to think it’s the second one.
Only you would be wrong, it’s actually totally the first one.
Birds Aren’t Real is a satirical movement that claims that birds aren’t really animals but sophisticated drones that the government uses to spy on you.
They’ve been showing up at protests around the country, putting up billboards in major cities, and driving vans covered in conspiracy lingo.
But Birds Aren’t Real… Isn’t real.
It’s a parody, meant to highlight the absurdity of the conspiracy theories that seem to be taking over the country.
Like any good satire, it walks the line to where you might not know if it’s real or not unless you’re in on the joke. For the people who are in on the joke, it serves as a kind of release. A way to thumb their nose at something that they see as dangerously destabilizing to the world they’re inheriting.
And it kind-of backs up the old adage that you can’t reason with crazy, you can only out-crazy them.
Oh, so you think JFK Jr is going to return from the dead and he’s going to do it at the place where his dad was murdered? Okay, well I don’t think birds are real. Top that.
Like people always say if you encounter someone who thinks the moon landings were faked, you should just say, “oh, you believe in the moon?”
Except there actually are people who think the moon is actually an alien spaceship so… yeah…

Birds Aren’t Real

A (Hoax) Theory Is Born

On July 20, 1969, the Apollo 11 lander touched down on the lunar surface. It was watched live by 652 million people around the world, which was 1/5th of the entire world’s population at the time.
And yet, here we are some 50 years later and 11% of the US population either strongly believe or somewhat believe that the moon landing was faked. That’s nearly 40 million people.
But here’s the thing… That’s nothing new.
In fact, a poll by Knight Newspapers just a year after the Apollo 11 landing showed that millions of Americans already doubted that it ever happened.
The major reasons given were that the US made it up to fool the communists or to justify the expense of the space program.
This was written about by self-published author Bill Kaysing in his book, We Never Went to the Moon: America’s Thirty Billion Dollar Swindle in 1976.
 Yeah… this was the first book that really caught fire in the moon landing denier world, but some of what he talks about in it… I guess are understandable considering the time.
This was the early 70s, the height of the Cold War, and Vietnam and Watergate had just shattered most Americans’ trust in their government.
So the idea that the moon landings were the shiny object they were using to distract people from “what’s really going on” is not hard to understand.

Climate of Doubt

For some people, it was easier to believe they’d been lied to than that the Eagle had landed.
And of course once you believe in a conspiracy theory, you see evidence of that conspiracy theory everywhere you look, and one thing that many moon landing deniers locked onto was the Van Allen Belts.
Earth’s magnetic field creates powerful rings of radiation that circle the planet known as the Van Allen Belts… Wait a second… If the Earth is surrounded by intense radiation, then there’s no way they went to the moon. Busted!
This has become one of the biggest pieces of “evidence” that moon landing deniers reference, and I’ve seen it brought up in my comments for years, even though it has been disproven a thousand different ways, it keeps coming back up. It seems to be one of the stickier elements of this particular conspiracy theory.
And I think that’s because there is an element of truth to it. The Van Allen belts do exist. And they are dangerous.
But pretty much everything about the Apollo missions were dangerous. And they were only overcome by the grit and determination and sheer genius of the NASA engineers and astronauts. They literally problem-solved their way to the moon.
And I think that’s why this conspiracy theory is so aggravating, it’s just totally urinating over the herculean efforts of hundreds of thousands of people to do this one amazing and inspiring thing. And it’s so cynical, we have this one great thing that we did, why do you have to…
Sorry… That was… Off topic, we’re talking about the Van Allen belts.

James Van Allen

The belts are named after astrophysicist James Van Allen, who was a cosmic ray expert from the University of Iowa.
In the late 50s, he worked with graduate students to develop the Cosmic Ray Instrument, which included a Geiger counter that could register protons and electrons above a minimum energy.
Rocketry was in its earliest years and they hoped to be able to launch this into space to gauge what the radiation looked like above our atmosphere.
This proved to be a challenge. But not so much a technological one but a political one.

Army v. Air Force

This was in the days before NASA, when rockets were strictly a military thing, and the various branches of the military were competing to be the first to put a rocket into space.
The main competitors were the Army and Air Force. And each had a secret weapon in their corner.
The Air Force had the U. S. secretary of defense on their side; he wanted them to control rocket design.
And the Army had NAZIS… (long pause) Guess who won?
Specifically Werner von Braun who yes, was a Nazi, but he was also a genius.
So the Army was actually making some great strides but because the DOD was kinda on the Air Force’s side, advancement was stymied by infighting and red tape.

Enter Sputnik

But on October 4, 1957… things changed.
The first Soviet satellite, Sputnik I, was put into orbit and the second those beeps started sounding over American heads, well that clarified some things.
The Defense department fell in line behind von Braun and gave him all the resources he needed to launch a satellite.
And to distance the project from military goals — in the public eye at least — the decision was made launch a civilian satellite, something that didn’t have a military objective.
And von Braun was given a deadline of 90 days to get this thing up into space so he didn’t care what it was as long as it was ready to go.
And one satellite that was ready to go was Van Allen’s Cosmic Ray Instrument, so it got picked and was renamed Explorer 1.
Quick side note, Van Allen himself was in Antarctica when he heard the news so he contacted one of his grad students named George Ludwig to deliver the satellite. Which he did… in the back of his car.
He literally loaded up his pregnant wife and two young daughters and drove 1600 miles to Cape Canaveral with Explorer 1 – the first American satellite to ever reach space – in his trunk.
But I guess it paid off because he later became a chief research scientist at NASA. Good show, old chap.
So anyway, Explorer 1 launched on January 31, 1958, the United States was officially in space, and there was much rejoicing. (yaay…)
But while Americans were high fiveing each other over this accomplishment, Van Allen and his team went about interpreting the data that was coming back. (grand gesture) and THIS was…  not when the Van Allen belts were discovered.
Actually they were really disappointed with the data because half of it was missing.

Space is Radioactive

Where readings should have been, there were long gaps where the detector didn’t pick up any particles. And they couldn’t quite figure out why.
So for Explorer Two, they added a magnetic recorder to keep a log of the detector’s measurements. Previously, they were just reading it live.
And THIS was… (down energy) not when they Van Allen Belts were discovered because Explorer 2 blew up (didn’t make it to orbit), but Explorer 3! Haha! Explorer 3 in March 1958, that one got up there and everything worked perfectly.
Same as the first time, there were giant gaps where the detector didn’t pick up anything, but this time they were able to pin those gaps down to specific locations in orbit.
At the same time they ran some tests on one of the Cosmic Ray Instruments and discovered that the effect could be simulated by bathing it in X-rays.
And THIS is… where he figured out that there were belts of intense radiation around the Earth, that’s how we got the Van Allen Belts.

Starfish Prime

So, what to do with this information? (thinking) Radiation belts… So many ideas… (idea) Let’s nuke it.
(sigh) Yeah, the US nuked the Van Allen belts in 1962.
It was actually part of a series of 5 atmospheric nuclear tests because that was a thing we just used to do.
But one particular test was called Starship Prime, and it was aimed at the Van Allen Belts.
They were testing to see if they could use the belts to create a radioactive shield that could protect targets on the ground from missile attack. It didn’t work. But the EMP from it did manage to disable 1/3 of all satellites that were in orbit at the time.

The Inner and Outer Belts

The inner belt extends from about 600 kilometers to nearly 10,000 kilometers above Earth’s surface, and it’s mostly made of protons.
Some have been stripped from the solar wind by the Earth’s magnetic field, while others are supplied by the upper atmosphere
The outer belt stretches from about 13,500 km to nearly 60,000 km, but this is highly variable, it kinda depends on how you measure it.
The outer belt especially can swell at times as low-energy electrons and other particles rush in, but that diminishes gradually, sometimes in a few minutes, sometimes it takes days.
And there are still a lot of questions around how exactly the belts work, but we do know the basics.
Earth’s magnetic field captures the particles and funnels them around the planet, kinda the same way particle accelerators and fusion reactors contain particles in a magnetic field.

And Other Surprises

But recent measurements by NASA’s Van Allen Probes has shown the belts are more dynamic than we thought.
In one observation period, a solar storm caused a surge of electrons in the outer belt
Five days after the energy dissipated, there was another major surge... but there wasn’t a storm this time. They don’t know what caused it.
The Van Allen probes also revealed the existence of a third belt. Briefly.
This one popped up in what they call the “slot region” between the inner and outer belts in 2012.
It existed for 4 weeks and then a shock wave from the Sun wiped it out. It’s never been seen again.
So yeah, the belts are super dynamic, they grow and change according to solar activity and other things we still don’t understand. And they are powerful. Any conspiracy theorist that says these are dangerous is absolutely right. But are they deadly?

How Deadly Are They?

Studies have shown that inside the typical shielding of a satellite, an astronaut could absorb as much radiation in an hour in the belts as most people absorb in eighteen months on Earth.
Scary… sure, but notice I said “survivors.” A fatal dose of radiation is far higher than that.
So talking about radiation measurements gets tricky because there are many different units scientists use but I’m going to try to stick to the Sievert, because that measures damage done to living tissue.
Symptoms of radiation poisoning appear at 400 millisieverts.
A dose above 2000 millisieverts can be fatal.
But even double that dosage is survivable, with treatment. I don’t recommend you try this.
With that in mind, an astronaut in our hypothetical spacecraft would absorb 6 millisieverts of radiation per hour. So not too bad.

Damage Over Time

But there is a catch — small amounts of radiation damage can accumulate over time.
According to the FDA, doses of 5 to 20 millisieverts of ionizing radiation may increase the risk of fatal cancer.
A typical CT scan can deliver a dose in that range, which is why doctors don’t give them to everybody.

Must Go Faster

So, obviously, you wouldn’t want to hang out in the Van Allen Belts any longer than you have to. Thankfully, rockets go really fast.
When we talk about how NASA minimized the risk to the astronauts, the first thing they did was to limit the time astronauts spent there.
When the Apollo astronauts entered the inner belt, they were traveling just over 38,000 kilometers per hour.
That means the trip through both belts was under two-and-a-half-hours long. Not great, not terrible.

Apollo’s Trajectory

But that’s not all they did to minimize exposure.
Long before Apollo 11, Van Allen and his team had mapped the radiation in the belts, and there are certain regions of the belts that are stronger than others. So they didn’t go through there.
Yes, they developed a complicated maneuver called (look at paper), Going Around It.

Average Mission Dosage

The next precaution they took has to do with the command module capsule.
So remember earlier when I mentioned how much radiation an astronaut would receive in a typically – shielded satellite? Well they weren’t in a typically-shielded satellite.
One of the mandatories of the Apollo command module was that they be engineered to survive the largest solar flare then on record.
So, special materials and coatings in the hull, water shielding, and even their suits provided a bit of shielding.

Solar Event Monitoring

And one last thing NASA did was they monitored the sun for solar events.
Like I said before, the size and strength of the belts fluctuate quite a bit. Usually due to solar activity.
So NASA created the Solar Particle Alert Network, or SPAN, which carefully monitored solar activity leading up to the missions.
They advise NASA on periods of high solar activity, so astronauts can be ordered to shelter in the shielded areas of spacecraft, which thankfully never happened on any of the missions.
Although there was a close call between Apollo 16 and 17 (August 1972) where radiation went as high as 4000 millisieverts.
But even if there had been some astronauts caught in that, the shielding would have reduced that dosage to 350 millisieverts, which according to a NASA news article, “That’s the difference between needing a bone marrow transplant, or having a headache.”
The crew of the Apollo missions carried personal dosimeters that measured radiation exposure from launch to landing.
And because of the efforts I just listed, the average dose ranged from a low of 0.18 rad on Apollo 11 to a high of 1.14 rad on Apollo 14.
As I mentioned before there are lots of different radiation measurements and rads don’t convert directly to Sieverts, but for reference, 70 rad is considered dangerous, while 120 rad can be fatal.
So, long story short, the Van Allen Belts are not as deadly as conspiracy theorists seem to think. NASA was well aware of their danger long before Apollo 11 took flight, and they took the proper precautions.
Of course if you’re dedicated to the conspiracy, none of this matters, these are all just lies to cover up the fraud and anybody and everybody who can validate these facts are in on the conspiracy. Including me.

Small Price to Pay

When it comes down to it, the Van Allen Belts are just one of MANY concerns to deal with regarding space travel, like orbital debris or thermal management.
They definitely put a limit on the altitude of crewed missions, but it’s not a danger to anything like the ISS, they orbit thousands of kilometers below the belts.
In fact, those dosimeters on the Apollo astronauts showed that they probably received twice as much radiation on the moon as a typical astronaut does in low Earth orbit.
So you might say the Van Allen Belts are a small price to pay for the protection of Earth’s magnetic field.

No Fatal Radiation

Moon hoaxers would of course move on to all the other “evidence” that has all been thoroughly debunked, I’m not going to spend time on any of those. And I’m sure that as we go back to the moon with the Artemis program, these theories are going to crop up all over again.
But I for one choose to celebrate the moon landing, and instead of focusing on all the things that might disprove it, focus on the amazing people who contributed to this program and tell their stories.
Like George Ludwig driving 1600 miles with Explorer 1 in his trunk, these people embodied the best of what it means to be human, doing whatever it takes to advance and explore and push past boundaries. Even massive particle accelerators in space.

The Colorado River Is Dying – And It Could Crash The Economy

The Colorado River is often called The Lifeline of the Southwest. 40 million people rely on it. It supports a $1.7 trillion economy. And it is quickly drying up. So let’s start 2022 with a look at the Colorado River. What’s causing this to happen? What’s being done about it? And just how bad is it going to get if nothing changes?


Happy New Year everyone, it’s 2022, I hope you’re off to a great start, and I hope this new year brings you all the success and happiness you can possibly handle.

One way that many Arizona farmers have started off this year is by losing their crops because of mandatory water restrictions, essentially making them a canary in the coalmine in a massive ecological disaster. (blink/SFX)

Come on, you got like 10 seconds of happiness there, what else did you expect?
Lake Mead, which straddles Arizona and Nevada and provides water and power for millions of people, is currently only 35% full. It’s literally the lowest the lake has ever been since the Hoover Dam was built in 1931.

It’s been going down for a while, but just a few months ago in August of 2021, the federal government officially declared a water shortage on the Colorado River for the first time ever.

And with that came restrictions for Arizona farmers that would take effect in January 2022, which would be right about… (look at watch) Now.

But there’s a reason for all this concern. The Colorado River is dying. Fast. And if nothing is done, it could be the beginning of an environmental disaster that would permanently reshape a large swath of the United States.

There’s a lot of things in life that are profoundly important to us but we spend insanely little time thinking about. In so many ways we’re just utterly spoiled by our modern conveniences.

Things like where our electricity is generated, where our trash goes, how the microwave works, and where our water comes from.

Because we don’t see the full life cycle of the resources we consume, we remain blissfully ignorant of it. Until we don’t have it anymore.

And that’s when little things happen like, you know… society collapsing.

Which is why the water shortage declaration is a big deal. It’s effectively changed the official policy from one of, “Eh, maybe something’ll happen,” to one of “…okay, we need to make something happen.”

The declaration will reduce Arizona’s supply of water from the Colorado River by around 20 percent, or 512,000 acre-feet.

By the way, an acre-foot is around 1,230,259 liters (325,000 gallons), which is enough water for two or three homes a year.

Reductions are mandated for Arizona, Nevada, and also parts of Mexico, but what this means for the farmers in Arizona is that many in places like Pinal County are planning on leaving some of their fields dry and unplanted.

These same farmers are expecting their entire water supply to be shut off in 2023.

And that could happen if Lake Mead’s level declines to 320 meters (1,050 feet) above sea level, which would prompt even more restrictions.

According to Jennifer Pitt of the National Audubon Society, “As this inexorable-seeming decline in the supply continues, the shortages that we’re beginning to see implemented are only going to increase,” “Once we’re on that train, it’s not clear where it stops.”

These are drastic measures that will financially impact thousands of farmers, but around 25 million people rely on Lake Mead for their water supply across Arizona, California, Mexico, and Nevada.

Overall, the Colorado River provides water for 40 million Americans. That’s more than 12% of the entire US population.

What happens to the Colorado affects almost every major western U.S. city, thirty Native American tribes, 5.5 million acres of farmland, and northern Mexico.

The river’s flow has declined by about 20 percent over the last century, according to a 2020 U.S. Geological Survey study.

And more than half of that decline is due to warming temperatures across the basin.

The study also found that without significant reductions in greenhouse gas emissions, it could go down by 31 percent by 2050.

This is a climate crisis playing out in real time. So, how did we get here? And what can be done?

You know how you guys are always begging me to do more videos about river systems and the minutia of interstate water compacts, well your day has come my friend!

The Colorado River is a massive system of rivers and tributaries that flows through seven states across 2,300 kilometers (1,448 miles) before ending in the Gulf of California (or the Sea of Cortez).

It plays such a significant role in the region it’s sometimes called the “Lifeline of the Southwest.”

The river begins at La Poudre Pass in the Rocky Mountains in Colorado at 10,184 feet above sea level where it’s fed by melting snow in the mountains.

Unsurprisingly it’s very close to the continental divide. Rivers to the west flow toward the Pacific, those in the east flow toward the atlantic.

From its headwaters, it flows south and feeds Grand Lake, Shadow Mountain Lake, and Lake Granby. Then cuts across western Colorado through Grand Junction before it enters Utah and starts carving up the southwest, through Arches National Park, Moab, The canyonlands, Glen Canyon, before collecting into Lake Powell.

From there it goes on to form Marble Canyon before the mother of them all, the Grand Canyon, shortly after that it forms Lake Mead, passes through the Hoover Dam, and flows south, eventually feeding Lake Mohave and Lake Havasu.

It then continues flowing south, creating the border between Arizona and California, before it enters Mexico at Yuma and eventually ends its journey at the Gulf of California.

This river not only has created and shaped some of the most beautiful natural landscapes in the world, it crosses a wide range of natural environments and ecosystems.

Alpine tundra at its headwaters through semiarid plateaus and canyons to arid deserts in the lower basin.

It’s one of the most heavily developed rivers in the world, and that’s nothing new, it’s provided water for people and agriculture for thousands of years.

The Ute and Southern Paiute Indian tribes hunted and gathered in the plateaus and canyonlands and the Hohokam Indians in the lower basin built the largest prehistoric irrigation system in western America on the Gila and Salt rivers.

There’s also the Yuman tribes who did extensive floodplain farming along the Colorado River.

It’s also gone by many names over the years.

Various Native American tribes called it Tomichi, Nah-Un-Kah-Rea, or Akanaquint.

Spanish explorers in the 16th century called it Rio del Tizon, which translates to River of Embers or Firebrand River.

Some maps later named it the Rio Colorado de los Martyrs and the El Rio de Cosminas de Rafael, kinda tying its characteristic red water with the blood of martyrs.

Settlers in the 1800s named it the Grand River, possibly because it’s the river that goes through the Grand Canyon.

Colorado became a U.S. state in 1876, but the river didn’t go by the state’s name until 1921.

But in 1921, U.S. Representative Edward T. Taylor from Colorado pushed for Congress to change the name of the Grand River to the Colorado River because it should have the name of the state where it begins.

Congress approved the name change that same year, meaning last year the Colorado River as we know it turned 100 years old. And I bet you didn’t even send it a birthday card. You monster.

I didn’t send one either, but we all probably should have. The Colorado River irrigates 15% of crop output in the U.S. and 13 percent of livestock production.

The Colorado River Basin can’t afford to leave farmers out to dry

For example, pumped water irrigates plains in Northern Colorado where alfalfa and corn are grown and used to feed cattle.

And water pumped to southern California feeds vegetable crops that are shipped to restaurants and stores across the U.S.

If you live in the US, chances are you ate something today that was made possible by the Colorado river.

With so much at stake and so many people affected across such a wide area, it should come to no surprise that the Colorado River has been the subject of a LOT of treaties.

The Colorado River Compact in 1922 divided the river into lower and upper compact states.

  •  Arizona, California, Nevada (lower)
  • Colorado, New Mexico, Utah, Wyoming (upper)

At the time of the agreement, the river was estimated to be close to 16.5 million acre-feet at Lees Ferry, Arizona. This is the dividing line between the lower and upper basins.

So they agreed to split fifteen million acre-feet of water between the lower and upper compact states. I guess 15 million just being a nice round conservative number.

Later on in 1944, another treaty allocated 1.5 million acre-feet per year to Mexico.

Lake Powell feeds the upper compact states, that one was formed by the Glen Canyon Dam, and Lake Mead feeds the lower states, created of course by the Hoover Dam.

The Hoover Dam also supplies almost all the electricity that powers the sights and sounds of Las Vegas.

All in all, the Colorado River has 15 dams, providing power for cities all along its path and forming reservoirs that hold more than 4 times the river’s annual flow.

And its tributaries have hundreds more dams that do the same for smaller towns and municipalities.

But going back to the 1922 Compact, it was later discovered that the initial estimate of 15 million acre-feet of water volume was actually kinda skewed.

Turns out the years leading up to the agreement was an abnormally wet period. So there was actually less water available than the agreements specified.

This led to tight regulation of the hydrology in the region, which is why there are a lot of restrictions on rainwater collection in Colorado. Because other states have a right by treaty to that water and it’s kind-of like you’re stealing from them.

In contrast to those abnormally wet years, since the year 2000, the Colorado River Basin has experienced a historic drought.
Sure, the river’s always had wet and dry times, but the last couple of decades are the driest the basin has seen in 1,200 years, based on tree rings and geological data.
And the major factor behind this exceptional drought? Take a guess.

Climate change. It’s climate change.

According to studies by scientists at Colorado State University and University of California-Los Angeles, 53 percent of the loss was caused by warmer temperatures.

Warmer temperatures that reduce the size of the average snowpack in the mountains. Less snow, less meltwater to feed the river.

Also the warmer temps cause plants to uptake more water to prevent dehydration, as well as boosts the amount of water that evaporates off the landscape.

The other 47 percent of the decrease was due to precipitation pattern shifts.

As in there’s less rainfall in the areas that feed the tributaries in the Rocky Mountains and more in other areas that aren’t effective in generating runoff.

The scientists named this the Millennium Drought and compared it with a drought from 1953 to 1968 when the river’s flow also shrank.

But that drought was caused by a period of less precipitation, and not so much by warming temperatures.

There’s actually more rain falling now than the last drought, but the levels are lower because of warmer temperatures.

When you factor in the rate of warming, it’s projected that the river’s flow could decrease by 5 to 20 percent over the next 40 years.

And by the year 2100, it could go down by as much as 55 percent.

Now someone in the comments is going to point out that population growth is also a factor and you would not be wrong about that.

The number of people in the states that rely on the Colorado River has gone up by more than six and a half million over the last 20 years.

In fact some of the fastest growing areas in the country are in this region. Utah saw the largest percentage growth of any state in the country at the last census.

This is an actual problem, many are starting to wonder if these states should be actively discouraging new residents.

Some might use that as a way of dismissing the climate change part of the equation, just saying it’s more people so of course there’s less water to go around, but that doesn’t change the measurably smaller snow pack that feeds the river and the measurably higher temperatures.

Population control is kind-of a hard sell in politics but the increase in population is exacerbating an already bad problem.

To reiterate how much is at stake here… The Colorado River Basin drives a $1.4 trillion economy. If it was its own country, it would be the world’s seventh largest economically.
So, what happens if it dries up completely?

Just for starters, 40 million people will be without water and could lead to major population shifts from some of the country’s largest cities, like L.A., Las Vegas, and Phoenix.

When we hear people talk about mass migration and climate refugees, it’s not just sea level rise flooding coastal cities, it’s this.

But even for people who don’t live in these cities, the effects could be catastrophic.

Less water for crops means more fish dying in rivers so we could see food shortages, reduced hydroelectric power entering the grid, increasing the costs of all those things and countless other connected industries…

All of which could compound on top of themselves and bring the world’s 7th largest economy to its knees, destabilizing other economies and leading to a total economic collapse.

Kinda starting off 2022 with a real joygasm of a video here.

But hold up, don’t panic just yet. There are some efforts in place to keep that from happening.

In October, the Arizona government allocated $30 million to help keep more water in Lake Mead.

These funds will be used to buy or rent water rights with Native American tribes and others who have guaranteed water allocations.
Urban areas are also doing their part in water conservation.

For example, Las Vegas is paying residents to rip out their lawns, and Los Angeles plans to recycle 100 percent of its wastewater by 2035.
The big year to keep an eye out for is 2026. That’s when the river’s management guidelines are set to expire.

Every state and everyone with an interest in the river’s future will be involved in a round of talks that will determine the river’s future.

And for all you out there that really nerd out on the intricacies of water treaties, and I know there are… tens of you out there… It’s gonna make for some pretty riveting CSPAN.

And whatever comes out of those talks had better work or the next round of talks could have mandatory stillsuits and evaporative water collectors on the table, which would suck because those things break down a lot and you need to get to Toshi station to pick up some power converters.

But all jokes aside, look, I know you’re tired of hearing about climate change and it probably feels like everything gets blamed on climate change to the point that even I’m like, okay, not everything is climate change.

And that’s true, not everything is climate change. But this is. And it’s REALLY bad.

We have to make some fundamental changes to the way we live and power our lives. If not by choice, eventually by necessity.

Just ask those farmers in Arizona that are right now deciding which fields to not plant this year.

This is a tangible problem that is affecting people’s lives today. And it’s not just on the Colorado river, this is happening in river systems all around the world.

So I don’t know as much as I talk about reducing climate change, maybe we should talk more about how we adapt to climate change in the coming decades.

Because that’s something we’ve already started doing.

Got anything to add? Anything I missed? Any changes you’ve made over issues like this? Throw them in the comments.

2021 Year in Review | Answers With Joe

Well, 2021 is coming to a close, so let’s take a look back at some of the biggest science stories of the year – and look ahead at what to look forward to in 2022!


Well, we made it. 2021 is coming to a close and here we are. We survived. A little beaten, a little broken, but here we are.

I say we survived… Truth be told, I’m recording this early because I’d like to have a little time off for the holidays so hopefully we’re all still here and haven’t been destroyed by an asteroid or something worse…

So, this is either my swan song or my latest episode. Either way, let’s make it a banger.

This is going to be one of my more straightforward episodes. It’s basically a list of the science and technology accomplishments of 2021, followed by what we can expect to happen in those fields next year.

Let’s launch right into it.


First on our docket is space, our fascinating neighbor above our heads. Here are some highlights from this year.

NASA’s Perseverance rover landed safely on Mars in February. 

In April, a small helicopter that traveled with Perseverance named Ingenuity became the first powered flight of an aircraft on another planet when it hovered for 30 seconds above the surface of Mars. 

Also in April, SpaceX secured a $2.89 billion contract with NASA to build its next crewed lunar lander. 

And let’s not forget another news item from April when China’s Tiangong space station was launched with its first core module named Tianhe. 

On May 5, the Starship SN15 from SpaceX flew up to around 10 kilometers (6.2 miles), performed several maneuvers, and landed softly on its landing pad six minutes after takeoff. 

SpaceX’s Starship prototypes are around 46 meters (150 feet) tall, similar to the height of a 15-story building. Three Raptor rocket engines power each starship.

On July 11, Virgin Galactic’s SpaceShipTwo carried Richard Branson and five other crewmates to 86 kilometers (53 miles) above Earth’s surface.

They experienced four minutes of weightlessness before gliding back down to the Spaceport America facility in New Mexico.  

On July 20, Blue Origin carried its first humans above the Karman line, the boundary between our atmosphere and outer space that is 100 kilometers (62 miles) above the Earth’s surface.

Blue Origin’s founder Jeff Bezos, his brother, Mark Bezos, Wally Funk, and Oliver Daemen were on the flight.

Funk was 82 years old, and Daemen was 18 years old, making them the oldest and youngest people to travel in outer space at the time.

On July 29, an incident occurred on board the International Space Station when a Russian module fired its thrusters when it shouldn’t have, making the station begin to spin, but luckily flight engineers were able to bring the station under control. 

On September 16th, the Inspiration4 mission orbited the Earth for 2 days carrying an all civilian crew on board a SpaceX Crew Dragon capsule, making it the first all civilian orbital flight in history.

The crew featured Jared Isaacman, who also funded the mission, Sian Proctor, Christopher Sembroski, and Hayley Arceneaux, who actually just recently was hired by SpaceX so congratulations to her.

Astra Space’s Rocket 3.3 reached orbit on November 20 from the Pacific Spaceport Complex Alaska on Kodiak Island. 

In December, Rocket Lab shared details about its Neutron rocket that’s designed to carry satellites into space.

The rocket is made out of a special carbon, will be mostly reusable, and should touchdown on a landing pad after launching. 

Electric Vehicles

Up next, electric vehicles.

According to BloombergNEF, electric vehicles made up 7.2 percent of global car sales in the first half of 2021.

That’s up from 2.6 percent in 2019 and 4.3 percent in 2020.

Its data also shows that electric vehicles made up 3 percent of sales in North America in the first half of the year. 

Some of the new vehicles that went on sale or were planned to go on sale this year include the:

  • Ford Mustang Mach-E
  • GMC Hummer EV
  • Mercedes-Benz EQC400
  • Nissan Ariya
  • Polestar 2
  • Rivian R1T
  • Tesla Cybertruck
  • Volkswagen ID.4

In October, automaker Rivian reported that it had produced 180 R1T pickups and delivered 156 of them. 

Also in October, Lucid Motors started its first delivery of Lucid Air Dream.

The U.S. Environmental Protection Agency certified that it can go 520 miles on a single charge, making it the longest range of any pure battery electric vehicle.

The vehicle was named MotorTrench Car of the Year that month, too. 

And in December, the U.S. Securities Exchange Commission requested documents from the company that relate to an investigation of its special purpose acquisition company merger with Churchill Capital Corp. IV earlier in the year.

No surprise, its stock shares plummeted by 10 percent when that news got out.

The Edison Electric Institute announced the new National Electric Highway Coalition in December.

The coalition includes more than 50 U.S. utility companies and cooperatives that have come together to help speed up the building of electric vehicle charging stations along the country’s highways.  

Tesla vehicles continued to be popular this year. In its third quarter that ended in October, its total production of its 3/Y and S/X models was 237,823, which is up 64 percent year over year.

Its deliveries for both models was 241,391, a 73 percent increase year over year. 

And in late October, Tesla’s market value hit $1 trillion after it made a deal to sell 100,000 vehicles to car-rental company Hertz.


Moving on. Next up: Healthcare and a couple of highlights from this past year.

Back in April, Neuralink released a video showing a monkey using the company’s brain chip to play the video game Pong telepathically.

The company also raised $205 million in venture backing over the summer.

It plans to start testing its brain chips in humans next year. 

Probably the biggest news in healthcare this year was the approval of the COVID-19 vaccine, which regardless of how it’s been weaponized politically, was a huge achievement and a major step forward in mRNA vaccines.

As of early December, more than 8.3 billion doses have been administered across 184 countries, including 476 million doses in the US. 

This is important because the more people are vaccinated against COVID-19, the better chance we have at overcoming the pandemic and helping slow down deadly mutations of the virus.


From your body to the world’s body, the environment.

At the end of COP26 in November, 151 countries submitted new climate plans to help cut their emissions by the year 2030.

In the fall, researchers at Linköping University in Sweden and Soochow University in China manufactured a solar cell using a solution with a high boiling point and without any toxic ingredients.

The cell’s energy efficiency is better than 17 percent.

Also this past fall, scientists at ETH Zurich in Switzerland built a plant that produces carbon-neutral liquid fuels from sunlight and air. 

In 2021, scientists at The Ohio State University discovered a way to turn hydrogen sulfide into hydrogen fuel.

Other Scientific Developments

A few other notable scientific developments include:

In July, researchers at Google along with physicists at Princeton, Stanford used Google’s quantum computer to demonstrate a genuine “time crystal.” This was something that was only first theorized a couple years ago.

Gravitational-wave observatories released a new crop of 35 events, bringing the total number of detections to 90.

The new events include the lightest neutron star ever seen, as well as two clashes involving large black holes.

Scientists confirmed that there was no evidence of phosphine in the clouds of Venus. The gas may have been mistaken for sulfur dioxide. 

On October 1, the European and Japanese BepiColombo mission made its first fly-by of Mercury.

It passed just 199 kilometers (124 miles) above the planet’s surface and took black-and-white pictures of the planet’s crater-filled surface from a distance of around 1,000 kilometers (621 miles).

This year, a team at City University of Hong Kong discovered a new type of sound wave. This airbourne wave vibrates transversely and carries spin and orbital angular momentum like light does.

The discovery may help develop applications in acoustic communications, sensing, and imaging. 

It was reported in late November that scientists from the University of Vermont, Tufts University, and Harvard University’s Wyss Institute for Biologically Inspired Engineering developed a new form of biological reproduction different from any animal or plant known to science.

They took stem cells from frogs and turned them into robots, called xenobots. Those robots began to reproduce. 

So, this is how humanity ends, right?



Assuming AI doesn’t eliminate the human race, we have some things to look forward to in 2022.

The James Webb Space Telescope launches on Dec. 22, 2021. Or maybe it’s launched already. We’ll know by the time this episode is released.

We should be able to start seeing images from the telescope about six months after it launches. 

SpaceX’s orbital starship may launch in January or February. It will involve a starship prototype named SN20 that has six Raptor engines and a 29-engine Super Heavy called Booster 4. 

NASA is planning to launch its megarocket called the Space Launch System in February. This rocket is part of the Artemis program, which plans to send astronauts to the Moon in 2024. 

Firefly Aerospace is aiming for its second orbital launch attempt of its Alpha rocket next year.

Relativity Space, a 3D rocket printing company, is planning the demonstration launch of its lightweight Terran 1 rocket in early 2022. 

Electric Vehicles

As far as electric vehicles are concerned, we can expect exciting new models to be released next year. Some of these include: 

  • BMW i4
  • Cadillac Lyriq
  • Ford F-150 Lightning
  • Kia EV6
  • Polestar 3
  • Rivian RS1
  • Toyota bZ4X
  • Volvo C40 Recharge

Meanwhile Tesla is projecting to reach 1.3 million deliveries in 2022 as the Giga Berlin factory goes into full production along with the Austin Gigafactory. And with any luck we’ll start to see cars delivered with the new 4680 cells


When it comes to health and medicine next year, I’m going to make a bold prediction: There will be more COVID-19 variants and more vaccines. I know, wild, right?


Even more wild is the alternative energy sector.

A report from S&P Global Market Intelligence says that U.S. solar and wind deployments will hit new records in 2022.

It’s expected that as much as 44 gigawatts of utility-scale solar and 27 gigawatts of wind power will come online next year.

S&P also expects 8 gigawatts of storage to be installed in 2022. This would be about six times higher than a previous record in 2020.

So that’s just kind-of a quick look at what we can expect next year, but I’d love to hear what you’re most excited about. Let me know in the comments.

As for me personally, this last year has been as weird for me as it has been for everyone else, I’m sure 2022 will innovate new and exciting kinds of weird for us to experience.

Channel wise it’s been a great year and if anybody’s curious my top 5 videos were…

I’ve got a lot of big things planned for the next year, I just purchased a lot of equipment so we can step up the quality of the videos… This one notwithstanding.

But at the end of every year, we look back on the previous year with a certain level of exhaustion and hope that the next one will be better. I’m sure 2022 will have its rough moments, but I wish the best for all of you.

Scientists Have Discovered The Largest Structure In The Universe

In today’s Lightning Round video, I answer questions from Patreon supporters on topics such as the Giant Arc – possibly the largest structure ever discovered in the universe, how autonomous cars will change industries, geopolitical instability, and whether phones can actually disrupt commercial aircraft.


It’s almost Christmas, so it’s time for Christmas lights-ning round.

And because it’s the 6th day of Christmas, I’ve got 6 geese a-layin’, meaning 6 questions. Because geese are very inquisitive animals and they’re laying questions…

Nothing about this analogy works. I’m not even sure if it’s the 6th day; where do you start counting from?

Apparently all of the different “gifts” in the song represent something and the partridge in a pear tree is supposed to mean they’re having an affair? That’s what my wife told me anyway. It’s all very weird, I’m sure the Victorians came up with it.

It’s probably all just hallucinations from arsenic and lead poisoning washed down with cocaine wine.

Anyway… Let’s get to the questions!

Like always these Lightning Round questions were gathered from Patreon supporters who are supporting at the solar system level so big thanks to them for the support as well as the questions.

Robin Tennant Colburn

Do cell phones really interfere with commercial airplane cockpit equipment?

Seems pretty hard to believe they don’t confiscate phones if it is true or wouldn’t a lot of planes have come down?–I think this falls into the category of “An Abundance of Caution”

According to pilot and author of Cockpit Confidential, Patrick Smith, ““Can cellular communications really disrupt cockpit equipment? The answer is potentially yes, but in all likelihood no,”“Even if it is not actively engaged with a call, a powered phone dispatches bursts of energy that can, in theory, interfere with a plane’s electronics. Aircraft are designed and shielded with this interference in mind, however, and this should mitigate any ill effects.”

So airplane mode is just an extra layer of protection when the plane is in the air, but it’s on takeoff and landing that it’s the most important, this is when most airplane incidents occur.

This is when it’s most important for pilots to communicate clearly with the tower and really, this is the only time the pilots actually do any flying, the rest is just done on autopilot with the pilots there to keep watch and make sure everything’s working correctly.

It’s the same reason they want you to put away large electronic devices at takeoff and landing, should something go wrong, you don’t want those flying around. It’s very unlikely to be necessary, but it can’t hurt to be cautious.

I for one don’t care. It’s a tiny price to pay. Commercial plane crashes are down to almost nothing, thanks to this overabundance of caution, so I’m kinda fine with that. Flying is a modern miracle. Smartphones are a modern miracle. Must we have both at the same time?

Also this: 

Plus, as Business Insider notes, the sheer effort of hundreds of in-flight cell phones attempting to connect to on-the-ground towers can put a major strain on cellular networks.

On the ground, your phone connects to one cell tower at a time (the closest one to you), switching to a new one as you move. But, as Travel + Leisure reports, when you’re far from the towers at 10,000 feet in the air traveling at hundreds of miles an hour, your phone connects to multiple towers at once.

That congestion can potentially make it more difficult for people on the ground to connect.


Cole Parker

While one might debate the when, the if of self driving cars seems settled. When level-4 unoccupied driving becomes available what business and services types are the most effected? Taxis seems obvious but what about parking lots or gas stations?

Gas stations I assume would be more affected by electrification than autonomy What even is a gas station anymore? Isn’t it all convenience stores with self-service gas pumps (except in some places) Because drivers will no longer be pumping gas themselves, gas stations won’t be needed at major intersections and fueling and recharging will likely take a place in out of the way locations where real estate is less expensive.  However, some observers believe the spread of AVs could be boon for convenience stores as long-distance trips will become more popular and replace air travel. Even if the nature of filling stations change, passengers will still need to stop to use the bathroom or to get something to eat or drink, so it remains to be seen if business at roadside convenience stores could increase.  Insurance companies Warren Buffet: Buffett told CNBC, “If they’re safer, there’s less in the way of insurance costs, [and] that brings down premiums significantly.”
Trucking/logistics Hauling more goods for less money could lower prices on everything. long-haul trucking will become more efficient which could put pressure on railroads;


Beyond these five, many other industries will be affected. For example, the need for parking spaces will be gradually relieved, which will also affect the way real estate is used;  more cellular data and entertainment services like Netflix will be consumed during car trips; package and food delivery will become more efficient and cheaper, accelerating the growth of restaurant delivery and e-commerce; driving schools will become obsolete; 

Brian Beswick

Can you talk about The Great Arc?

Is the Cosmological Principle dead?

This was interesting, I wasn’t aware of this one.
So the Giant Arc was discovered thanks to the Sloan Digital Sky Survey, so let’s start with that.

The Sloan Digital Sky Survey, or SDSS, is a 2.5m wide optical telescope that conducts multi-spectral imaging and red-shift surveying. It’s based out of Apache Point Observatory in New Mexico.

It’s been through many iterations over the years but first started operating in 1999 and its job is to survey as much of the sky as possible.

Like most telescopes zoom in on a tiny point in the sky or a single star or there’s that famous Hubble Deep Field photo where they pointed it at a tiny patch of sky and found all these galaxies, this is the opposite of that.

This telescope wants to capture the entire sky every night and just chug away collecting massive amounts of data, like it collects 200 gigs of data every night.
Anyway, all of this data is made available for astronomers to use and cosmologist Alexia Lopez found what might be the largest structure in the universe.(Alexia Lopez, University of Central Lancashire in Preston, England)

It looks like this, and they’re calling it the Giant Arc. So, just to explain what you’re looking at here, all the little blue dots are quasars, basically primordial black holes which I’ve talked about in a previous video but they’re super old and therefore really, really far away. And the gray blobs are galaxy clusters in between the quasars and us. And what Lopez and her team were looking for were specific signatures of light coming off of those quasars that would indicate that the light was passing through matter, in this case they were looking at magnesium.

In other words, magnesium atoms in the galaxy clusters were absorbing specific frequencies of light, or electromagnetic radiation. Now, we can’t see these galaxy clusters, but the magnesium in the stars and dust clouds were absorbing that particular frequency of light in those spots, so that’s how you know there’s something there.

And this something, this massive supercluster of galaxy clusters stretches across 1/15th the distance of the entire observable universe. If you could see it in the sky, it would be 20 times wider than the moon.

Which might not sound like much but that’s 9.2 billion light years away so yeah, it’s huge.

Now Brian also mentions the Cosmological Principle, and this is where things get pretty interesting.

The Cosmological Principle is a hypothesis that the universe is homogeneous at large scales, that in a big-picture view, stuff should kinda be everywhere, which is why things like the Bootes void is so weird.
So if this is an actual structure that’s that big in the universe, it kinda breaks that hypothesis.  And that would be a big deal. The question, basically, is are we seeing an actual structure or is it just a random collection of galaxy clusters that just happened to line up, and we see a structure because we’re pattern-seekers?

But there are other large structures that have been theorized lately too, including the Sloan Great Wall, the Giant Gamma-Ray Burst Ring and the Huge Large Quasar Group.

Maybe I could do a video on the largest objects in the universe? Just saying…

Matt Herring

Hey Joe, it’s been a while, hope all is well! Question: what technology are you the most excited for and why?

For me it’s mRNA if for no other reason than potential cancer vaccines.
Okay, first of all, guys, Matt Herring was one of my very first Patreon supporters, and he is still going strong on there, which absolutely blows my mind, total legend.

But when it comes to your question, I’ve gotta be honest, the mRNA thing is way up there for me.
I spend so much time worrying about cancer, especially the ones like pancreatic cancer that by the time you know you have it, it’s pretty much too late.

I actually lost an uncle to that a couple of years ago. Like literally he was diagnosed and 6 weeks later he was gone. Just unreal.
So yeah, anything that could take away that always-there anxiety about stuff like cancer would be a huge deal, for mental health reasons if nothing else.

I actually went to a conference on aging and longevity recently (text on screen: Thanks Chris!) and there were some great speakers talking about stem cell therapies and research into reversing aging which appeal to me for


I’m old, I’m getting old.

There was another speaker there (James Mault) who had come up with this thing called the BioButton that can regularly monitor your health signs so you can stay on top of things and fix them when they’re small.
He talked about how we don’t really have healthcare, we have sick care, we just do our thing and go see the doctor when we’re sick but just like anything else in this world, we need regular maintenance to keep problems from coming up.

Maintenance, and monitoring so you know when big problems are still small. Like we have that light on the dashboard in our cars to tell us something is wrong and we need to do something before the engine overheats or whatever, we could have that for our bodies. And we may be on the brink of new wearable devices that can do that. And I find that pretty cool.

Other things I find exciting are energy breakthroughs, all these fusion companies are making progress here and there, a thorium reactor I believe just went online in China, I’ve covered Small Modular Reactors on my channel.
And yeah, to me electric cars and energy storage is a big part of that as well, those get me excited.

I’ve been dipping my toe into VR stuff recently and starting to see the potential for that. If someone really does nail smartglasses, I think that would be a huge gamechanger. I’m ready to see something like that coming.
JWST, I’ve got every digit crossed for that over the next 6 months.

Yeah, some exciting stuff on the way. I’m sure I’m forgetting something, feel free to leave what you’re excited about in the comments.

And now, a less inspiring topic.

Maasman (Colton Maas)

What do you think the next 10 years will look like Geo politically?

Colton went on to talk about China and Russia and some of their more aggressive moves lately, like apparently Russia has started amassing troops on the border of Ukraine which is not encouraging.
I am not remotely qualified to answer this question so I’m just going to touch on a couple of things.

We’ve been seeing a rise in authoritarianism lately and I know it’s probably too simplistic but I do think the internet has a lot to do with it.

The internet is still very new from a historical perspective, and web 2.0, with the social media landscape, is only, what, just over 10 years old? And we are basically a tribal species that is struggling to be a global species, and it’s caused a lot of chaos and upheaval.

And in times of chaos and upheaval, people look to strongmen and cults of personality to guide them through. And I think that’s what we’re seeing.

I really hope that the upcoming generation will probe to be more saavy about that since they were brought up on the internet, and I think there’s some reasons to thing that might be the case.

Plus there are always pendulum swings, there will be anti-authoritarian movements that push back against the current trends, but whether that happens in the next 10 years is a big question.

So these authoritarians are going to grab as much as they can while they can, they’re going to continue to use social media to tear apart the US, who has kinda been the world police for a while now.
I don’t want to be a total downer but I do think there are going to be some difficult times ahead. I don’t think the worst is behind us. But again, this is the opinion of a very non-expert. So, make of that what you will.

John Regel 

If you could go back 5 years but only had enough energy in the time portal machine to shout a single statement at yourself through the time tunnel, what would you say?

You know what, honestly, I would just say, “Keep making videos, it works out!” Five years ago was a very interesting time for me because I’d been doing weekly videos on this channel for about 2 years and was just over 10,000 subscribers.

I was still working at the job at the newspaper and had just been picked for the YouTube NextUp program, which was a big motivator to try to do this full-time but I was nowhere near making enough to live off of.

But I had a chance to take another job, one where I would be managing youtube channels, and it was a big pay cut actually, and I took it. It was a crazy leap of faith and most people thought I’d lost my mind. I thought I’d lost my mind.

And then 6 months later my entire department at my last job got canned. Getting out when I did was one of the luckiest breaks I’ve ever had.
So yeah, it was rough for a while but I kept at it and things started to grow and here we are… But those were REALLY stressful times, actually it’s funny you picked 5 years ago because I really didn’t know how all this would turn out.

So yeah, a little validation at that time would have been nice.

BUT… if I knew, would I have worked as hard, butterfly effect, etc.?

John Regel

Have you ever noticed that dogs train us to a lesser degree?

About a year ago, my dog began walking up to my wife and I and stretching. We always found it so cute that we’d scratch his sides. It took us about a month to realize he was shaping our behavior as well. Is this owner bias (I.e. my dog is super smart because he’s my dog) or has he modified our behavior with positive reinforcement (doing something we find cute)?

As always with these lightning round videos, if you’d like to see a deeper dive into any of these subjects, please let me know in the comments. It could be it’s own video.

Dropping Science with Neil deGrasse Tyson

In this episode I had the pleasure to meet with Neil Degrasse Tyson, who gives me the lowdown his life as a science communicator, the incredible explosion of technology that we’re all living through, and the little inspirations that guided his career along the way. It’s a fascinating look at what drives one of the most famous science communicators in the world.

You can find Neil’s book, A Brief Welcome to the Universe: A Pocket-Sized Tour here:




How Scientists Accidentally Created The World’s Worst Smell

Thioacetone is a chemical whose smell is so bad, it’s almost impossible to believe. Weirdly, it was created from a chemical that you can find in candy. But it opens up questions about how smell works and why we react to smells the way we do.


We’ve all kinda gotten used to COVID-19 at this point and we’ve heard all the weird effects it can have on the body but one of the weirdest has to be that it makes you lose your sense of smell.

Remember when it was still new and we were learning new things about it all the time, how weird that was? Remember panicking if you thought you weren’t smelling something at the level you thought you should?

We only have 5 senses, and this disease, for reasons we still don’t understand two years later, turns one of them off.

Imagine if it made you blind temporarily, or deaf, or you couldn’t feel anything you touched?

I guess there are other diseases that do that actually.

But the point is, everybody who lost their sense of smell talks about how weird it makes everything, how it makes it hard to eat because food all tastes like Elmers glue.

Don’t know what you got till it’s gone I guess.

But there are some instances where not having a sense of smell would probably be a good thing. For example if you were ever to run across a certain chemical called Thioacetone; considered by many to be the worst smell in the world.

What’s the worst thing you’ve ever smelled? Really, think about it, put it in the comments. I bet just thinking about it brings you back to a vivid memory of some kind. Probably not a great one. Maybe it’s even something that traumatized you. And you’re now spiraling into a dark abyss of pain you thought you had escaped. A door you thought you had permanently shut. And now you’re back inside of it, trapped, screaming into the uncaring void…

…Sorry I just made you do that.

But that’s the power of smell, it’s wired directly into our emotional centers, it’s our most primal sense. And yet, we still don’t really know how it works.

I know that sounds like clickbait, but it’s true, there’s no single agreed-upon theory of smell.

What we do know is that a smell happens when an odor molecule binds to a receptor within the nasal cavity.

That smell is then interpreted by the glomerulus which gets a bunch of information from other receptors in the nose called olfactory receptor neurons, and then combines all that info together into what we call smell.

And that is about how deep our understanding goes, we’re still struggling to figure out how exactly our olfactory receptors detect the molecules in the first place.

There are competing theories.

Docking theory of olfaction: Purposes a very 1:1 match. It’s kind-of a lock and key situation where a molecule key fits into a receptor lock. Each receptor is either on or off and the number of different receptors tells the brain how to interpret it.

Odotope theory: Is similar to docking theory except that molecules can fit several types of receptors and vice versa. It’s more of a matter of processing the signal through the noise.

Vibration theory of olfaction: That the molecules fit into receptors but the receptors are actually interpreting the vibrations of the molecules at the atomic level.

This one is pretty controversial, it also posits that quantum tunneling is involved which is totally nuts, so it’s heavily debated. I just think it’s funny that smelling science has drama.

But because we don’t know exactly how it works, it turns out you can’t really measure stink.

Or I should say you can measure the concentration of a smell but good or bad is rather subjective. One person’s stinky cheese or dripping gasoline odor is someone else’s bouquet of roses. Noses are weird.

So there is no objective scale of smells like, say scoville units that measure spiciness by the level of capsaicin in a food.

What we can gather is people’s reactions to the stink and see just how universally hated it is. Then we can look at how much this chemical can disperse and still be detected. And from that, of course, we can create a weapon.

Because humans gonna human.

Yes, the US Department of Defense studied smell in order to create a non-lethal stink bomb to use against the enemy.

One person who consulted on the stink bomb project was a cognitive psychologist named Pamela Dalton.

She said that the DOD had created a lot of different smelly chemicals and gave her access to their stink inventory.

She zeroed in on one that the government used to simulate large military latrines to test cleaning products on.

From this base of stink Dalton went on to create what she dubbed the “stench soup” she described the soup as smelling like “Satan on a throne of Onions” and that she couldn’t imagine a worse smell.

Well, she might not be able to imagine it, but there is a worse smell. FAR worse.

In the year 1889, German scientists were working with a chemical called Trithioacetone, which today is used as a flavorant in candy. So fairly harmless chemical, but as they were experimenting with it, they “cracked” that molecule.

Turning Trithioacetone into just thioacetone. And it turns out that while good things may come in threes, one is the loneliest number.

Because this compound smells in a profound way.

Almost supernatural.

Okay, so let me take a second and tell you what I really wanted to do with this video.

I heard about thioacetone and my YouTuber clickbait brain took off I was like, I’m gonna get my hands on some of this stuff. I’m gonna take just a tiny bit of it and go down to the park and rub it on a tree and then shoot people reacting to it as they walked by.

I mean I’m not really into prank videos but smell is a difficult thing to get across visually so I really wanted to show someone reacting to it, either other people or myself, I’d title it, “I Smelled The Worst Thing In The World” And I’d even do the whole Thumbnail wow face, put a red circle in there, I was ready to sell out big time.

…But then I read some of the stories about thioacetone.

And yeah… That’s not going to happen.

When the German chemists accidentally made a small amount of thioacetone, they also accidentally spilled a little of it.

And apparently one little quirk of thioacetone is it spreads through the air so fast that the people standing right next to it don’t actually smell it right away.

And by the time they picked up on the smell in their lab, people were literally passing out and vomiting in the streets of Friberg.

A newspaper at the time described it as “an offensive smell which spread rapidly over a great area of the town causing fainting, vomiting and a panic evacuation.”

They literally tipped over a beaker and it caused people to evacuate their homes and businesses up to a half a mile away in all directions in a matter of seconds.

That’s some fast stank.

Thioacetone popped up again in England in 1967.

British researchers Victor Burnop & Kenneth Latham were using thioketones to synthesize new polymers, and made a terrible mistake.

They left a bottle of residue open for a moment. In that time a building filled with people 200 yards away started to become overwhelmed by an unspeakable odor and nausea soon followed.

Just having a bottle open for a few seconds caused people to get sick in another building two football fields away.

At around that same time Professor Mayer at Dresden University of Technology stumbled upon it while experimenting with chemical compounds called thioketones.

He had heard about thioacetone and wanted to experience it for himself. And even though he was fully prepared to smell something awful, he was still blown away by it. Saying…

He calls it red. I’ve heard it described as brown and orange as well.

Oh, and another thing about thioacetone – it lingers.

As if the pungent smell wasn’t bad enough, apparently it’s described as “sticky” and will get embedded in your clothes and hair.

There was a story of some chemists that were exposed to thioacetone in a lab and even though they followed all the protocols and washed it off and everything, later that day when they went to a restaurant, the other patrons complained about their smell to the manager so much he literally sprayed deodorant on them at their table.

There’s Stench, And Then There Is Thioacetone, the World’s Stinkiest Chemical

But all of these stories are from a long time ago, it’s actually hard to find modern accounts of scientists working with Thioacetone, because I think they did enough research.

It doesn’t seem to have any other uses, it just stinks, really bad, really really bad. Enough said.

It’s literally like a WMD of smell, and it’s just not worth messing with it.

Because smelly spills happen all the time.

One of these spills happened in the city of Rouen (row-on) in Normandy, France.

There they have a chemical plant run by Lubrizol. And in 2013 they had a large chemical spill.

That chemical was heated by the air and evaporated, filling the air with the smell of rotten eggs that the wind carried for hundreds of miles, as far away as London.

People in Rouen reported feeling nauseous and having migranes from it.

The chemical spilled? Wasn’t Thioacetone actually but its baby brother mercaptan which is often put into natural gas lines to detect gas leaks.

Yeah, the use of mercaptan in gas lines goes back to… you guessed it… The Victorians!

I mentioned in one of my many Victorian videos that when gas lines first started appearing in homes, lots of people died of gas leaks, because natural gas is odorless and they didn’t know there was a leak. So they started adding mercaptan to it.

The human nose can detect 1.6 parts per billion of mercaptan, so you can imagine just how intense the odor must have been when pure mercaptan was floating over Europe.

The reason is the sulphur in the molecule, and the human nose is so good at detecting sulphur it is thought even a single molecule can even be detected.

Fun Fact:

The human nose is also really good at detecting the scent of vanilla (scientifically known as Vanillin). Vanillin has an even lower detection threshold of 2.0×10-7 mg/m3.

Yeah, apparently if you took an oil tanker full of pure vanillin and poured it out, it would literally make the whole planet smell like vanilla. The whole planet.

Which would kinda turn the whole planet into Disneyland. They pipe in vanilla scent through vents along main street Disneyland.

But back to thioacetone, why? Why is this stuff so bad? Especially when you consider it was derived from something that goes in candy? Chemistry is weird.

Thioacetone is derived from the Thiol group aka sulfur family.

Thiols are sulfur analogues of alcohol (Thi = Sulfur ol=alchol)

Humans evolved to avoid them because rotten things tend to release sulfurs. And rotting things tend to also contain you know, death and disease; stink, saving lives.

After a couple thousand years of evolutionary pressures, and now we are grossed out by dumpsters on breezy summer nights. Looking at you South Dallas.

Ultimately that is really what our human perception of stink is supposed to do. It’s what all of our senses are supposed to do, keep us alive.

Thioacetone really shows just how powerful chemistry can be and arguably dangerous, I can’t imagine what two oil trucks of thioacetone being tipped over would smell like. International smells like death day…week?

But luckily that’s very unlikely to happen. It doesn’t seem to have any use so there’s not a lot of factories making the stuff.

Like it’s so bad that you can’t even weaponize it, which is why the DOD was experimenting with other things. Try to smoke out some bad guys or disperse a crowd with thioacetone and all your guys will pass out in their own vomit too.

So even though my original plan for this video was kinda thwarted, maybe some things are best just left as a mystery.

Perhaps shelving thioacetone for good is the wise thing to do.

Researching into this episode made me appreciate my nose, as silly as that may sound.

I found myself taking time to really smell things around me, because most of our surroundings we grow used to and “smell blind” to but taking time to take deep breaths allowed me to appreciate new scents in my home and outside.

Smell is also powerfully tied to our memories and our emotions on an almost animal instinctual level. Most people can remember a smell, be it the smell of their grandmother’s house or their favorite flower.

It is very integral to who we are as humans, it enriches the world around us. Smell keeps us safe, and also leads us to food or water. One of the lowest concentrations of smell humans can detect is the scent of rain.

That scent, geosmin, can be as faint as 400 parts per trillion and still be detected, which really speaks to just how ancient and well tuned our booger factory is.

So it’s not all horrible. I asked you earlier to think of the worst thing you’ve ever smelled, how about I leave you on an upbeat, what’s your favorite smell? What’s a smell that takes you to your happy place?

And maybe as you go about your day, take a minute from time to time to focus on your nose and the smells around you. You might find it gives you a more rounded out experience, besides, it just helps you live in the moment, which is always good.


Subscribe to YouTube Channel

Subscribe to Podcast

You can be canker sore free in only 6 weeks!